1
|
Long L, Fei X, Chen L, Yao L, Lei X. Potential therapeutic targets of the JAK2/STAT3 signaling pathway in triple-negative breast cancer. Front Oncol 2024; 14:1381251. [PMID: 38699644 PMCID: PMC11063389 DOI: 10.3389/fonc.2024.1381251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its propensity for metastasis and poor prognosis. TNBC evades the body's immune system recognition and attack through various mechanisms, including the Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. This pathway, characterized by heightened activity in numerous solid tumors, exhibits pronounced activation in specific TNBC subtypes. Consequently, targeting the JAK2/STAT3 signaling pathway emerges as a promising and precise therapeutic strategy for TNBC. The signal transduction cascade of the JAK2/STAT3 pathway predominantly involves receptor tyrosine kinases, the tyrosine kinase JAK2, and the transcription factor STAT3. Ongoing preclinical studies and clinical research are actively investigating this pathway as a potential therapeutic target for TNBC treatment. This article comprehensively reviews preclinical and clinical investigations into TNBC treatment by targeting the JAK2/STAT3 signaling pathway using small molecule compounds. The review explores the role of the JAK2/STAT3 pathway in TNBC therapeutics, evaluating the benefits and limitations of active inhibitors and proteolysis-targeting chimeras in TNBC treatment. The aim is to facilitate the development of novel small-molecule compounds that target TNBC effectively. Ultimately, this work seeks to contribute to enhancing therapeutic efficacy for patients with TNBC.
Collapse
Affiliation(s)
- Lin Long
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiangyu Fei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Liucui Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Liang Yao
- Department of Pharmacy, Central Hospital of Hengyang, Hengyang, China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
2
|
Liu Z, Zhao L, Feng Y, Wang Q, Dong N, Zhang Y, Yin T, He H, Tang X, Gou J, Yang L. Dual-responsive PEG-lipid polyester nanoparticles for siRNA and vaccine delivery elicit anti-cancer immune responses by modulating tumor microenvironment. Biomater Sci 2023; 11:6619-6634. [PMID: 37608695 DOI: 10.1039/d3bm01265d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Cancer vaccine-based immunotherapy has great potential; however, the vaccines have been hindered by the immunosuppressive tumor microenvironment (TME). In this study, dual-responsive PEG-lipid polyester nanoparticles (PEG BR647-NPs) for tumor-targeted delivery were proposed. PEG BR647-NPs containing the model tumor-associated antigen (TAA) OVA and the signal transduction and activator of transcription 3 (STAT3) siRNA were delivered to the tumor. The PEG BR647-NPs were internalized by tumor-associated dendritic cells (TADCs), where the TAA and siRNA were released into the cytoplasm via the endo/lysosome escape effect. The released OVA was presented by the major histocompatibility complex class I to activate T cells, and the released STAT3 siRNA acted to relieve TADC dysfunction, promote TADC maturation, improve antigen-presenting ability, and enhance anticancer T cell immunity. Meanwhile, the PEG BR647-NPs were ingested by tumor cells, killing them by the pro-apoptosis effect of STAT3 siRNA. Moreover, PEG BR647-NPs could reduce the proportion of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) in tumors and abrogate immunosuppression. The integration of relieved TADC dysfunction, promoted TADC maturation, enhanced antigen cross-presentation, abrogated immunosuppression, and improved pro-apoptosis effect boosted the vaccination for tumor immunotherapy. Thus, PEG BR647-NPs efficiently delivered the vaccine and STAT3 siRNA to the tumor and modulated immunosuppressive TME, thus providing better antitumor effects.
Collapse
Affiliation(s)
- Zixu Liu
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| | - Linxuan Zhao
- Department of Pharmaceutics, College of Pharmacy Sciences, Jilin University, Changchun 130021, China
| | - Yupeng Feng
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| | - Qingqing Wang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| | - Nan Dong
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| | - Yu Zhang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| | - Tian Yin
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Haibing He
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| | - Xing Tang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| | - Jingxin Gou
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| | - Li Yang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| |
Collapse
|
3
|
Wong GL, Manore SG, Doheny DL, Lo HW. STAT family of transcription factors in breast cancer: Pathogenesis and therapeutic opportunities and challenges. Semin Cancer Biol 2022; 86:84-106. [PMID: 35995341 PMCID: PMC9714692 DOI: 10.1016/j.semcancer.2022.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer and second-leading cause of cancer deaths in women. Breast cancer stem cells (BCSCs) promote metastasis and therapeutic resistance contributing to tumor relapse. Through activating genes important for BCSCs, transcription factors contribute to breast cancer metastasis and therapeutic resistance, including the signal transducer and activator of transcription (STAT) family of transcription factors. The STAT family consists of six major isoforms, STAT1, STAT2, STAT3, STAT4, STAT5, and STAT6. Canonical STAT signaling is activated by the binding of an extracellular ligand to a cell-surface receptor followed by STAT phosphorylation, leading to STAT nuclear translocation and transactivation of target genes. It is important to note that STAT transcription factors exhibit diverse effects in breast cancer; some are either pro- or anti-tumorigenic while others maintain dual, context-dependent roles. Among the STAT transcription factors, STAT3 is the most widely studied STAT protein in breast cancer for its critical roles in promoting BCSCs, breast cancer cell proliferation, invasion, angiogenesis, metastasis, and immune evasion. Consequently, there have been substantial efforts in developing cancer therapeutics to target breast cancer with dysregulated STAT3 signaling. In this comprehensive review, we will summarize the diverse roles that each STAT family member plays in breast cancer pathobiology, as well as, the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators in the context of breast cancer treatment.
Collapse
Affiliation(s)
- Grace L Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sara G Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Daniel L Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
4
|
Dinakar YH, Kumar H, Mudavath SL, Jain R, Ajmeer R, Jain V. Role of STAT3 in the initiation, progression, proliferation and metastasis of breast cancer and strategies to deliver JAK and STAT3 inhibitors. Life Sci 2022; 309:120996. [PMID: 36170890 DOI: 10.1016/j.lfs.2022.120996] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Breast cancer (BC) accounts for the majority of cancers among the female population. Anomalous activation of various signaling pathways has become an issue of concern. The JAK-STAT signaling pathway is activated in numerous cancers, including BC. STAT3 is widely involved in BCs, as 40 % of BCs display phosphorylated STAT3. JAK-STAT signaling is crucial for proliferation, survival, metastasis and other cellular events associated with the tumor microenvironment. Hence, targeting this pathway has become an area of interest among researchers. KEY FINDINGS This review article focuses on the role of STAT3 in the initiation, proliferation, progression and metastasis of BC. The roles of various phytochemicals, synthetic molecules and biologicals against JAK-STAT and STAT3 in various cancers have been discussed, with special emphasis on BC. SIGNIFICANCE JAK and STAT3 are involved in various phases from initiation to metastasis, and targeting this pathway is a promising approach to inhibit the various stages of BC development and to prevent metastasis. A number of phytochemicals and synthetic and biological molecules have demonstrated potential inhibitory effects on JAK and STAT3, thereby paving the way for the development of better therapeutics against BC.
Collapse
Affiliation(s)
- Yirivinti Hayagreeva Dinakar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Mohali 140306, Punjab, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Ramkishan Ajmeer
- Central Drugs Standard Control Organization, East Zone, Kolkata 700020, West Bengal, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India.
| |
Collapse
|
5
|
Pan L, Chen X, Rassool FV, Li C, Lin J. LLL12B, a Novel Small-Molecule STAT3 Inhibitor, Induces Apoptosis and Suppresses Cell Migration and Tumor Growth in Triple-Negative Breast Cancer Cells. Biomedicines 2022; 10:biomedicines10082003. [PMID: 36009550 PMCID: PMC9405793 DOI: 10.3390/biomedicines10082003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Persistent STAT3 signaling plays a pivotal role in human tumor malignancy, including triple-negative breast cancer (TNBC). There are few treatment options currently available for TNBC; thus, given its importance to cancer, STAT3 is a potential cancer therapeutic target and is the focus of drug discovery efforts. In this study, we tested a novel orally bioavailable small-molecule STAT3 inhibitor, LLL12B, in human MDA-MB-231, SUM159, and murine 4T1 TNBC cell lines. TNBC cells frequently expressed persistent STAT3 phosphorylation and their cell viability was sensitive to STAT3 knockdown by siRNA. LLL12B selectively inhibited the IL-6-mediated induction of STAT3 phosphorylation, but had little effect on the IFN-γ-mediated induction of STAT1 phosphorylation nor the EGF-mediated induction of ERK phosphorylation. In addition, targeting STAT3 with LLL12B induced apoptosis, reduced colony formation ability, and inhibited cell migration in TNBC cells. Furthermore, LLL12B suppressed the tumor growth of the MDA-MB-231 TNBC cells in a mammary fat pad mouse tumor model in vivo. Together, our findings support the concept that targeting persistent STAT3 signaling using the novel small-molecule LLL12B is a potential approach for TNBC therapy.
Collapse
Affiliation(s)
- Li Pan
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Xiang Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Feyruz Virgilia Rassool
- Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
6
|
c-Kit Induces Migration of Triple-Negative Breast Cancer Cells and Is a Promising Target for Tyrosine Kinase Inhibitor Treatment. Int J Mol Sci 2022; 23:ijms23158702. [PMID: 35955836 PMCID: PMC9369219 DOI: 10.3390/ijms23158702] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 11/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with a poor prognosis and the absence of targeted therapy. c-Kit, a receptor tyrosine kinase (RTK), is considered a molecular target for anticancer drugs. Tyrosine kinase inhibitors (TKIs) recognizing c-Kit are used for the treatment of c-Kit-expressing tumors. However, the expression, function, and therapeutic potential of c-Kit have been little explored in TNBC. Here, we studied the expression and effects of c-Kit in TNBC through in vitro and in silico analysis, and evaluated the response to TKIs targeting c-Kit. Analysis of TNBC cells showed the expression of functional c-Kit at the cell membrane. The stimulation of c-Kit with its ligand induced the activation of STAT3, Akt, and ERK1/2, increasing cell migration, but had no effect on cell proliferation or response to Doxorubicin. Analysis of public datasets showed that the expression of c-Kit in tumors was not associated with patient survival. Finally, TNBC cells were susceptible to TKIs, in particular the effect of Nilotinib was stronger than Doxorubicin in all cell lines. In conclusion, TNBC cells express functional c-Kit, which is a targetable molecule, and show a strong response to Nilotinib that may be considered a candidate drug for the treatment of TNBC.
Collapse
|
7
|
Liao M, Qin R, Huang W, Zhu HP, Peng F, Han B, Liu B. Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: a revisited perspective from molecular mechanisms to targeted therapies. J Hematol Oncol 2022; 15:44. [PMID: 35414025 PMCID: PMC9006445 DOI: 10.1186/s13045-022-01260-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of human breast cancer with one of the worst prognoses, with no targeted therapeutic strategies currently available. Regulated cell death (RCD), also known as programmed cell death (PCD), has been widely reported to have numerous links to the progression and therapy of many types of human cancer. Of note, RCD can be divided into numerous different subroutines, including autophagy-dependent cell death, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis and anoikis. More recently, targeting the subroutines of RCD with small-molecule compounds has been emerging as a promising therapeutic strategy, which has rapidly progressed in the treatment of TNBC. Therefore, in this review, we focus on summarizing the molecular mechanisms of the above-mentioned seven major RCD subroutines related to TNBC and the latest progress of small-molecule compounds targeting different RCD subroutines. Moreover, we further discuss the combined strategies of one drug (e.g., narciclasine) or more drugs (e.g., torin-1 combined with chloroquine) to achieve the therapeutic potential on TNBC by regulating RCD subroutines. More importantly, we demonstrate several small-molecule compounds (e.g., ONC201 and NCT03733119) by targeting the subroutines of RCD in TNBC clinical trials. Taken together, these findings will provide a clue on illuminating more actionable low-hanging-fruit druggable targets and candidate small-molecule drugs for potential RCD-related TNBC therapies.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Fu Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Manore SG, Doheny DL, Wong GL, Lo HW. IL-6/JAK/STAT3 Signaling in Breast Cancer Metastasis: Biology and Treatment. Front Oncol 2022; 12:866014. [PMID: 35371975 PMCID: PMC8964978 DOI: 10.3389/fonc.2022.866014] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women. Metastasis is the primary cause of mortality for breast cancer patients. Multiple mechanisms underlie breast cancer metastatic dissemination, including the interleukin-6 (IL-6)-mediated signaling pathway. IL-6 is a pleiotropic cytokine that plays an important role in multiple physiological processes including cell proliferation, immune surveillance, acute inflammation, metabolism, and bone remodeling. IL-6 binds to the IL-6 receptor (IL-6Rα) which subsequently binds to the glycoprotein 130 (gp130) receptor creating a signal transducing hexameric receptor complex. Janus kinases (JAKs) are recruited and activated; activated JAKs, in turn, phosphorylate signal transducer and activator of transcription 3 (STAT3) for activation, leading to gene regulation. Constitutively active IL-6/JAK/STAT3 signaling drives cancer cell proliferation and invasiveness while suppressing apoptosis, and STAT3 enhances IL-6 signaling to promote a vicious inflammatory loop. Aberrant expression of IL-6 occurs in multiple cancer types and is associated with poor clinical prognosis and metastasis. In breast cancer, the IL-6 pathway is frequently activated, which can promote breast cancer metastasis while simultaneously suppressing the anti-tumor immune response. Given these important roles in human cancers, multiple components of the IL-6 pathway are promising targets for cancer therapeutics and are currently being evaluated preclinically and clinically for breast cancer. This review covers the current biological understanding of the IL-6 signaling pathway and its impact on breast cancer metastasis, as well as, therapeutic interventions that target components of the IL-6 pathway including: IL-6, IL-6Rα, gp130 receptor, JAKs, and STAT3.
Collapse
Affiliation(s)
- Sara G Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Daniel L Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Grace L Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
9
|
STAT3 Signaling in Breast Cancer: Multicellular Actions and Therapeutic Potential. Cancers (Basel) 2022; 14:cancers14020429. [PMID: 35053592 PMCID: PMC8773745 DOI: 10.3390/cancers14020429] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Many signaling pathways are overactive in breast cancer, and among them is the STAT3 signaling pathway. STAT3 is activated by secreted factors within the breast tumor, many of which are elevated and correlate to advanced disease and poor survival outcomes. This review examines how STAT3 signaling is activated in breast cancer by the proinflammatory, gp130 cytokines, interleukins 6 and 11. We evaluate how this signaling cascade functions in the various cells of the tumor microenvironment to drive disease progression and metastasis. We discuss how our understanding of these processes may lead to the development of novel therapeutics to tackle advanced disease. Abstract Interleukin (IL)-6 family cytokines, such as IL-6 and IL-11, are defined by the shared use of the gp130 receptor for the downstream activation of STAT3 signaling and the activation of genes which contribute to the “hallmarks of cancer”, including proliferation, survival, invasion and metastasis. Increased expression of these cytokines, or the ligand-specific receptors IL-6R and IL-11RA, in breast tumors positively correlate to disease progression and poorer patient outcome. In this review, we examine evidence from pre-clinical studies that correlate enhanced IL-6 and IL-11 mediated gp130/STAT3 signaling to the progression of breast cancer. Key processes by which the IL-6 family cytokines contribute to the heterogeneous nature of breast cancer, immune evasion and metastatic potential, are discussed. We examine the latest research into the therapeutic targeting of IL-6 family cytokines that inhibit STAT3 transcriptional activity as a potential breast cancer treatment, including current clinical trials. The importance of the IL-6 family of cytokines in cellular processes that promote the development and progression of breast cancer warrants further understanding of the molecular basis for its actions to help guide the development of future therapeutic targets.
Collapse
|
10
|
Huang M, Liu H, Zhu L, Li X, Li J, Yang S, Liu D, Song X, Yokota H, Zhang P. Mechanical loading attenuates breast cancer-associated bone metastasis in obese mice by regulating the bone marrow microenvironment. J Cell Physiol 2021; 236:6391-6406. [PMID: 33554336 PMCID: PMC8222149 DOI: 10.1002/jcp.30314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer, a common malignancy for women, preferentially metastasizes to bone and obesity elevates the chance of its progression. While mechanical loading can suppress obesity and tumor-driven osteolysis, its effect on bone-metastasized obese mice has not been investigated. Here, we hypothesized that mechanical loading can lessen obesity-associated bone degradation in tumor-invaded bone by regulating the fate of bone marrow-derived cells. In this study, the effects of mechanical loading in obese mice were evaluated through X-ray imaging, histology, cytology, and molecular analyses. Tumor inoculation to the tibia elevated body fat composition, osteolytic lesions, and tibia destruction, and these pathologic changes were stimulated by the high-fat diet (HFD). However, mechanical loading markedly reduced these changes. It suppressed osteoclastogenesis by downregulating receptor activator of nuclear factor Kappa-B ligand and cathepsin K and promoted osteogenesis, which was associated with the upregulation of OPG and downregulation of C/enhancer-binding protein alpha and proliferator-activated receptor gamma for adipogenic differentiation. Furthermore, it decreased the levels of tumorigenic genes such as Rac1, MMP9, and interleukin 1β. In summary, this study demonstrates that although a HFD aggravates bone metastases associated with breast cancer, mechanical loading significantly protected tumor-invaded bone by regulating the fate of bone marrow-derived cells. The current study suggests that mechanical loading can provide a noninvasive, palliative option for alleviating breast cancer-associated bone metastasis, in particular for obese patients.
Collapse
Affiliation(s)
- Menglu Huang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Hong Liu
- Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Lei Zhu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Shuang Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Xiaomeng Song
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA
- Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University, Tianjin 300052, China
| |
Collapse
|
11
|
Santoni M, Miccini F, Cimadamore A, Piva F, Massari F, Cheng L, Lopez-Beltran A, Montironi R, Battelli N. An update on investigational therapies that target STAT3 for the treatment of cancer. Expert Opin Investig Drugs 2021; 30:245-251. [PMID: 33599169 DOI: 10.1080/13543784.2021.1891222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Signal transducer and activator of transcription 3 (STAT3) is involved in cancer initiation and resistance to chemo-radiation therapies and targeted agents. The role of STAT3 in inflammation and immunity together with its involvement in a variety of diseases including genitourinary, gastrointestinal, lung, ovarian and brain tumors makes STAT3 an ideal candidate for therapeutic strategies. AREAS COVERED The authors provided an overview on STAT3 inhibitors and examined the most recent results obtained by these agents in cancer patients. The authors discussed the results published since 2015 and the ongoing clinical trials on anti-STAT3 agents in cancer patients. The authors also provide our opinion on the future perspectives of this therapeutic approach in this context. The manuscript includes information from trial databases and scientific literature. EXPERT OPINION Future challenges include the development of non-peptide small-molecule inhibitors of STAT3 designed to directly inhibit STAT3 activity. In addition, inhibitors of STAT3/STAT3 nuclear translocation or DNA binding activity are also emerging as novel promising therapeutic approaches A better comprehension of the role of STAT3 in modulating immune response together with advances in understanding the mechanisms of STAT3-induced chemo and/or radio-resistance will also help the design of combined strategies in cancer patients.
Collapse
Affiliation(s)
- Matteo Santoni
- U.O.C Medical Oncology, Macerata Hospital, Macerata, Italy
| | | | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Antonio Lopez-Beltran
- Department of Pathology and Surgery, Faculty of Medicine, Cordoba University, Cordoba, Spain.,Anatomic Pathology, Champalimaud Clinical Center, Lisbon, Portugal
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | | |
Collapse
|
12
|
MEX3A promotes triple negative breast cancer proliferation and migration via the PI3K/AKT signaling pathway. Exp Cell Res 2020; 395:112191. [DOI: 10.1016/j.yexcr.2020.112191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/11/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022]
|
13
|
Letter to the editor Re: Pan et al. "LLY17, a novel small molecule STAT3 inhibitor induces apoptosis and suppresses cell migration and tumor growth in triple-negative breast cancer". Breast Cancer Res Treat 2020; 184:653. [PMID: 32803634 DOI: 10.1007/s10549-020-05853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
|