1
|
Stastna B, Dolezalova T, Matejkova K, Nemcova B, Zemankova P, Janatova M, Kleiblova P, Soukupova J, Kleibl Z. Germline pathogenic variants in the MRE11, RAD50, and NBN (MRN) genes in cancer predisposition: A systematic review and meta-analysis. Int J Cancer 2024; 155:1604-1615. [PMID: 38924040 DOI: 10.1002/ijc.35066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
The MRE11, RAD50, and NBN genes encode the MRN complex sensing DNA breaks and directing their repair. While carriers of biallelic germline pathogenic variants (gPV) develop rare chromosomal instability syndromes, the cancer risk in heterozygotes remains controversial. We performed a systematic review and meta-analysis of 53 studies in patients with different cancer diagnoses to better understand the cancer risk. We found an increased risk (odds ratio, 95% confidence interval) for gPV carriers in NBN for melanoma (7.14; 3.30-15.43), pancreatic cancer (4.03; 2.14-7.58), hematological tumors (3.42; 1.14-10.22), and prostate cancer (2.44, 1.84-3.24), but a low risk for breast cancer (1.29; 1.00-1.66) and an insignificant risk for ovarian cancer (1.53; 0.76-3.09). We found no increased breast cancer risk in carriers of gPV in RAD50 (0.93; 0.74-1.16; except of c.687del carriers) and MRE11 (0.87; 0.66-1.13). The secondary burden analysis compared the frequencies of gPV in MRN genes in patients from 150 studies with those in the gnomAD database. In NBN gPV carriers, this analysis additionally showed a high risk for brain tumors (5.06; 2.39-9.52), a low risk for colorectal (1.64; 1.26-2.10) and hepatobiliary (2.16; 1.02-4.06) cancers, and no risk for endometrial, and gastric cancer. The secondary burden analysis showed also a moderate risk for ovarian cancer (3.00; 1.27-6.08) in MRE11 gPV carriers, and no risk for ovarian and hepatobiliary cancers in RAD50 gPV carriers. These findings provide a robust clinical evidence of cancer risks to guide personalized clinical management in heterozygous carriers of gPV in the MRE11, RAD50, and NBN genes.
Collapse
Affiliation(s)
- Barbora Stastna
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tatana Dolezalova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Katerina Matejkova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Nemcova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Zemankova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marketa Janatova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Kleiblova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Soukupova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdenek Kleibl
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Kwong A, Ho CYS, Au CH, Tey SK, Ma ESK. Germline RAD51C and RAD51D Mutations in High-Risk Chinese Breast and/or Ovarian Cancer Patients and Families. J Pers Med 2024; 14:866. [PMID: 39202057 PMCID: PMC11355318 DOI: 10.3390/jpm14080866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND RAD51C and RAD51D are crucial in homologous recombination (HR) DNA repair. The prevalence of the RAD51C and RAD51D mutations in breast cancer varies across ethnic groups. Associations of RAD51C and RAD51D germline pathogenic variants (GPVs) with breast and ovarian cancer predisposition have been recently reported and are of interest. METHODS We performed multi-gene panel sequencing to study the prevalence of RAD51C and RAD51D germline mutations among 3728 patients with hereditary breast and/or ovarian cancer (HBOC). RESULTS We identified 18 pathogenic RAD51C and RAD51D mutation carriers, with a mutation frequency of 0.13% (5/3728) and 0.35% (13/3728), respectively. The most common recurrent mutation was RAD51D c.270_271dupTA; p.(Lys91Ilefs*13), with a mutation frequency of 0.30% (11/3728), which was also commonly identified in Asians. Only four out of six cases (66.7%) of this common mutation tested positive for homologous recombination deficiency (HRD). CONCLUSIONS Taking the family studies in our registry and tumor molecular pathology together, we concluded that this relatively common RAD51D variant showed incomplete penetrance in our local Chinese community. Personalized genetic counseling emphasizing family history for families with this variant, as suggested at the UK Cancer Genetics Group (UKCGG) Consensus meeting, would also be appropriate in Chinese families.
Collapse
Affiliation(s)
- Ava Kwong
- Division of Breast Surgery, Department of Surgery, The University of Hong Kong, Hong Kong SAR, China
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong SAR, China
- Cancer Genetics Centre, Breast Surgery Centre, Surgery Centre, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Cecilia Yuen Sze Ho
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Chun Hang Au
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Sze Keong Tey
- Division of Breast Surgery, Department of Surgery, The University of Hong Kong, Hong Kong SAR, China
| | - Edmond Shiu Kwan Ma
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong SAR, China
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| |
Collapse
|
3
|
Yari K, Hakimi A, Mohammadi M, Ammari-Allahyari M, Salari N, Ghasemi H. The Association of PTEN Gene Mutations with the Breast Cancer Risk: A Systematic Review and Meta-analysis. Biochem Genet 2024; 62:1617-1635. [PMID: 37658255 DOI: 10.1007/s10528-023-10464-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/18/2023] [Indexed: 09/03/2023]
Abstract
Breast cancer (BC) is the most common malignancy in women in western countries. A significant part of malignant cases is caused by genetic mutation. Mutations in the gene phosphatase and tensin homologue deleted on chromosome (PTEN) have been proven in various malignancies. The present study was conducted with the aim of investigating the prevalence of BC due to PTEN gene mutation, as well as estimating the chance of developing BC due to the occurrence of PTEN gene mutation. The present study was conducted using a systematic review method based on PRISMA 2020 statements. The search was done in PubMed, Web of Science (WOS), Scopus, and direct scientific databases. The search was performed using the keywords breast cancer, breast malignancy, PTEN, polymorphism, mutation, variant, and their equivalents. Statistical analysis was performed using the second version of Comprehensive Meta-Analysis Software. A total of 2138 articles were collected. After removing duplicate articles, checking the title and abstract, and then checking the full text of the documents, finally 64 articles were approved and entered the systematic review process. Analysis of these studies with a sample size of 231,179 showed the prevalence of breast cancer patients with PTEN mutations. The combined results of 64 studies showed that the prevalence of PTEN mutations has a 3.3 (95% CI 2.2-5) in BC patients, and an analysis of 6 studies showed that the odds ratio of developing BC due to PTEN mutation is 3.7 (95% CI 1.1-11.9). The results of this study show that mutation in the PTEN gene increases the chance of developing BC. However, it was found that a small part of patients gets BC due to the occurrence of mutation in this gene.
Collapse
Affiliation(s)
- Kheirollah Yari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Hakimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Mohammadi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | | | - Nader Salari
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hooman Ghasemi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
4
|
Huang T, Li J, Zhao H, Ngamphiw C, Tongsima S, Kantaputra P, Kittitharaphan W, Wang SM. Core promoter in TNBC is highly mutated with rich ethnic signature. Brief Funct Genomics 2023; 22:9-19. [PMID: 36307127 PMCID: PMC9853936 DOI: 10.1093/bfgp/elac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 01/25/2023] Open
Abstract
The core promoter plays an essential role in regulating transcription initiation by controlling the interaction between transcriptional factors and sequence motifs in the core promoter. Although mutation in core promoter sequences is expected to cause abnormal gene expression leading to pathogenic consequences, limited supporting evidence showed the involvement of core promoter mutation in diseases. Our previous study showed that the core promoter is highly polymorphic in worldwide human ethnic populations in reflecting human history and adaptation. Our recent characterization of the core promoter in triple-negative breast cancer (TNBC), a subtype of breast cancer, in a Chinese TNBC cohort revealed the wide presence of core promoter mutation in TNBC. In the current study, we analyzed the core promoter in a Thai TNBC cohort. We also observed rich core promoter mutation in the Thai TNBC patients. We compared the core promoter mutations between Chinese and Thai TNBC cohorts. We observed substantial differences of core promoter mutation in TNBC between the two cohorts, as reflected by the mutation spectrum, mutation-effected gene and functional category, and altered gene expression. Our study confirmed that the core promoter in TNBC is highly mutable, and is highly ethnic-specific.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - San Ming Wang
- Corresponding author: S.M. Wang, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China. Tel.: +(853) 8822-4836; E-mail:
| |
Collapse
|
5
|
Zhang Y, Yang L, Jiao X. Analysis of Breast Cancer Differences between China and Western Countries Based on Radiogenomics. Genes (Basel) 2022; 13:2416. [PMID: 36553681 PMCID: PMC9778234 DOI: 10.3390/genes13122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Using radiogenomics methods, the differences between tumor imaging data and genetic data in Chinese and Western breast cancer (BC) patients were analyzed, and the correlation between phenotypic data and genetic data was explored. In this paper, we analyzed BC patients' image characteristics and transcriptome data separately, then correlated the magnetic resonance imaging (MRI) phenotype with the transcriptome data through a computational method to develop a radiogenomics feature. The data was fed into the designed random forest (RF) model, which used the area under the receiver operating curve (AUC) as the evaluation index. Next, we analyzed the hub genes in the differentially expressed genes (DEGs) and obtained seven hub genes, which may cause Chinese and Western BC patients to behave differently in the clinic. We demonstrated that combining relevant genetic data and imaging features could better classify Chinese and Western patients than using genes or imaging characteristics alone. The AUC values of 0.74, 0.81, and 0.95 were obtained separately using the image characteristics, DEGs, and radiogenomics features. We screened SYT4, GABRG2, CHGA, SLC6A17, NEUROG2, COL2A1, and MATN4 and found that these genes were positively or negatively correlated with certain imaging characteristics. In addition, we found that the SLC6A17, NEUROG2, CHGA, and MATN4 genes were associated with clinical features.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Lifeng Yang
- College of Information and Computer, Taiyuan University of Technology, Jinzhong 030600, China
| | - Xiong Jiao
- College of Biomedical Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| |
Collapse
|
6
|
Díaz-Zabala H, Guo X, Ping J, Wen W, Shu XO, Long J, Lipworth L, Li B, Fadden MK, Pal T, Blot WJ, Cai Q, Haiman CA, Palmer JR, Sanderson M, Zheng W. Evaluating breast cancer predisposition genes in women of African ancestry. Genet Med 2022; 24:1468-1475. [PMID: 35396981 PMCID: PMC9597482 DOI: 10.1016/j.gim.2022.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Studies conducted primarily among European ancestry women reported 12 breast cancer predisposition genes. However, etiologic roles of these genes in breast cancer among African ancestry women have been less well-investigated. METHODS We conducted a case-control study in African American women, which included 1117 breast cancer cases and 2169 cancer-free controls, and a pooled analysis, which included 7096 cases and 8040 controls of African descent. Odds ratios of associations with breast cancer risk were estimated. RESULTS Using sequence data, we identified 61 pathogenic variants in 12 breast cancer predisposition genes, including 11 pathogenic variants not yet reported in previous studies. Pooled analysis showed statistically significant associations of breast cancer risk with pathogenic variants in BRCA1, BRCA2, PALB2, ATM, CHEK2, TP53, NF1, RAD51C, and RAD51D (all P < .05). The associations with BRCA1, PALB2, and RAD51D were stronger for estrogen receptor (ER)-negative than for ER-positive breast cancer (P heterogeneity < .05), whereas the association with CHEK2 was stronger for ER-positive than for ER-negative breast cancer. CONCLUSION Our study confirmed previously identified associations of breast cancer risk with BRCA1, BRCA2, PALB2, ATM, TP53, NF1, and CHEK2 and provided new evidence to extend the associations of breast cancer risk with RAD51C and RAD51D, which was identified previously in European ancestry populations, to African ancestry women.
Collapse
Affiliation(s)
- Héctor Díaz-Zabala
- Vanderbilt Epidemiology Center, Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Xingyi Guo
- Vanderbilt Epidemiology Center, Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Jie Ping
- Vanderbilt Epidemiology Center, Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Wanqing Wen
- Vanderbilt Epidemiology Center, Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Xiao-Ou Shu
- Vanderbilt Epidemiology Center, Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Jirong Long
- Vanderbilt Epidemiology Center, Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Loren Lipworth
- Vanderbilt Epidemiology Center, Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Bingshan Li
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Mary Kay Fadden
- Department of Family & Community Medicine, Meharry Medical College, Nashville, TN
| | - Tuya Pal
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Cancer Health Disparities, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - William J Blot
- Vanderbilt Epidemiology Center, Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Qiuyin Cai
- Vanderbilt Epidemiology Center, Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Julie R Palmer
- Department of Medicine, Boston University School of Medicine, Slone Epidemiology Center, Boston University, Boston, MA
| | - Maureen Sanderson
- Department of Family & Community Medicine, Meharry Medical College, Nashville, TN
| | - Wei Zheng
- Vanderbilt Epidemiology Center, Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN.
| |
Collapse
|
7
|
Benito-Sánchez B, Barroso A, Fernández V, Mercadillo F, Núñez-Torres R, Pita G, Pombo L, Morales-Chamorro R, Cano-Cano JM, Urioste M, González-Neira A, Osorio A. Apparent regional differences in the spectrum of BARD1 pathogenic variants in Spanish population and importance of copy number variants. Sci Rep 2022; 12:8547. [PMID: 35595798 PMCID: PMC9122922 DOI: 10.1038/s41598-022-12480-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/11/2022] [Indexed: 12/22/2022] Open
Abstract
Only up to 25% of the cases in which there is a familial aggregation of breast and/or ovarian cancer are explained by germline mutations in the well-known BRCA1 and BRCA2 high-risk genes. Recently, the BRCA1-associated ring domain (BARD1), that partners BRCA1 in DNA repair, has been confirmed as a moderate-risk breast cancer susceptibility gene. Taking advantage of next-generation sequencing techniques, and with the purpose of defining the whole spectrum of possible pathogenic variants (PVs) in this gene, here we have performed a comprehensive mutational analysis of BARD1 in a cohort of 1946 Spanish patients who fulfilled criteria to be tested for germline pathogenic mutations in BRCA1 and BRCA2. We identified 22 different rare germline variants, being 5 of them clearly pathogenic or likely pathogenic large deletions, which account for 0.26% of the patients tested. Our results show that the prevalence and spectrum of mutations in the BARD1 gene might vary between different regions of Spain and expose the relevance to test for copy number variations.
Collapse
Affiliation(s)
- B Benito-Sánchez
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - A Barroso
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - V Fernández
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - F Mercadillo
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - R Núñez-Torres
- Human Genotyping Unit (CEGEN), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - G Pita
- Human Genotyping Unit (CEGEN), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - L Pombo
- Medical Oncology Section, Universitary Hospital Complex of Albacete, Albacete, Spain
| | - R Morales-Chamorro
- Medical Oncology Section, Hospitalary Compex La Mancha Centro, Alcázar de San Juan, Ciudad Real, Spain
| | - J M Cano-Cano
- Medical Oncology Service, Universitary General Hospital of Ciudad Real, Ciudad Real, Spain
| | - M Urioste
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - A González-Neira
- Human Genotyping Unit (CEGEN), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - A Osorio
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain.
- Spanish Network On Rare Diseases (CIBERER), 28029, Madrid, Spain.
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, 29029, Madrid, Spain.
| |
Collapse
|
8
|
Ding R, Xiao Y, Mo M, Zheng Y, Jiang YZ, Shao ZM. Breast cancer screening and early diagnosis in Chinese women. Cancer Biol Med 2022; 19:j.issn.2095-3941.2021.0676. [PMID: 35380032 PMCID: PMC9088185 DOI: 10.20892/j.issn.2095-3941.2021.0676] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 01/01/2023] Open
Abstract
Breast cancer is the most common malignant tumor in Chinese women, and its incidence is increasing. Regular screening is an effective method for early tumor detection and improving patient prognosis. In this review, we analyze the epidemiological changes and risk factors associated with breast cancer in China and describe the establishment of a screening strategy suitable for Chinese women. Chinese patients with breast cancer tend to be younger than Western patients and to have denser breasts. Therefore, the age of initial screening in Chinese women should be earlier, and the importance of screening with a combination of ultrasound and mammography is stressed. Moreover, Chinese patients with breast cancers have several ancestry-specific genetic features, and aiding in the determination of genetic screening strategies for identifying high-risk populations. On the basis of current studies, we summarize the development of risk-stratified breast cancer screening guidelines for Chinese women and describe the significant improvement in the prognosis of patients with breast cancer in China.
Collapse
Affiliation(s)
- Rui Ding
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Miao Mo
- Department of Cancer Prevention, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ying Zheng
- Department of Cancer Prevention, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| |
Collapse
|
9
|
Huang T, Li J, Wang SM. Etiological roles of core promoter variation in triple-negative breast cancer. Genes Dis 2022; 10:228-238. [PMID: 37013029 PMCID: PMC10066267 DOI: 10.1016/j.gendis.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/26/2021] [Accepted: 01/12/2022] [Indexed: 10/19/2022] Open
Abstract
Abnormal gene expression plays key role in cancer development. A core promoter is located around the transcriptional start site. Through interaction between core promoter sequences and transcriptional factors, core promoter controls transcriptional initiation. We hypothesized that in cancer, core promoter sequences could be mutated to interfere the interaction with transcriptional factors, resulting in altered transcriptional initiation and abnormal gene expression and cancer development. We used triple-negative breast cancer (TNBC) as a model to test our hypothesis. We collected genome-wide core promoter variants from 279 TNBC genomes. After extensive filtering of normal genomic polymorphism, we identified 19,427 recurrent somatic variants in 1,238 core promoters of 1,274 genes and 1,694 recurrent germline variants in 272 core promoters of 294 genes. Many of the affected genes were oncogenes and tumor suppressors. Analysis of RNA-seq data from the same patient cohort identified increased or decreased gene expression in 439 somatic and 85 germline variants-affected genes, and the results were validated by luciferase reporter assay. By comparing with the core promoter variation data from 610 unclassified breast cancer, we observed that core promoter variants in TNBC were highly TNBC-specific. We further identified the drugs targeting the genes with core promoter variation. Our study demonstrates that core promoter is highly mutable in cancer, and can play etiological roles in TNBC and other types of cancer through influencing transcriptional initiation.
Collapse
|
10
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
11
|
Chen Z, Guo X, Long J, Ping J, Li B, Fadden MK, Ahearn TU, Stram DO, Shu XO, Jia G, Figueroa J, Palmer JR, Sanderson M, Haiman CA, Blot WJ, Garcia-Closas M, Cai Q, Zheng W. Discovery of structural deletions in breast cancer predisposition genes using whole genome sequencing data from > 2000 women of African-ancestry. Hum Genet 2021; 140:1449-1457. [PMID: 34487234 PMCID: PMC9109261 DOI: 10.1007/s00439-021-02342-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 12/28/2022]
Abstract
Single germline nucleotide pathogenic variants have been identified in 12 breast cancer predisposition genes, but structural deletions in these genes remain poorly characterized. We conducted in-depth whole genome sequencing (WGS) in genomic DNA samples obtained from 1340 invasive breast cancer cases and 675 controls of African ancestry. We identified 25 deletions in the intragenic regions of ten established breast cancer predisposition genes based on a consensus call from six state-of-the-art SV callers. Overall, no significant case-control difference was found in the frequency of these deletions. However, 1.0% of cases and 0.3% of controls carried any of the eight putative protein-truncating rare deletions located in BRCA1, BRCA2, CDH1, TP53, NF1, RAD51D, RAD51C and CHEK2, resulting in an odds ratio (OR) of 3.29 (95% CI 0.74-30.16). We also identified a low-frequency deletion in NF1 associated with breast cancer risk (OR 1.93, 95% CI 1.14-3.42). In addition, we detected 56 deletions, including six putative protein-truncating deletions, in suspected breast predisposition genes. This is the first large study to systematically search for structural deletions in breast cancer predisposition genes. Many of the deletions, particularly those resulting in protein truncations, are likely to be pathogenic. Results from this study, if confirmed in future large-scale studies, could have significant implications for genetic testing for this common cancer.
Collapse
Affiliation(s)
- Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, TN, 37203-1738, Nashville, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, TN, 37203-1738, Nashville, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, TN, 37203-1738, Nashville, USA
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, TN, 37203-1738, Nashville, USA
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Mary Kay Fadden
- Department of Family and Community Medicine, Meharry Medical College, Nashville, TN, USA
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Daniel O Stram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, TN, 37203-1738, Nashville, USA
| | - Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, TN, 37203-1738, Nashville, USA
| | - Jonine Figueroa
- Usher Institute and CRUK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Maureen Sanderson
- Department of Family and Community Medicine, Meharry Medical College, Nashville, TN, USA
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - William J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, TN, 37203-1738, Nashville, USA
| | | | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, TN, 37203-1738, Nashville, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, TN, 37203-1738, Nashville, USA.
| |
Collapse
|
12
|
Bhai P, Levy MA, Rooney K, Carere DA, Reilly J, Kerkhof J, Volodarsky M, Stuart A, Kadour M, Panabaker K, Schenkel LC, Lin H, Ainsworth P, Sadikovic B. Analysis of Sequence and Copy Number Variants in Canadian Patient Cohort With Familial Cancer Syndromes Using a Unique Next Generation Sequencing Based Approach. Front Genet 2021; 12:698595. [PMID: 34326862 PMCID: PMC8314385 DOI: 10.3389/fgene.2021.698595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background Hereditary cancer predisposition syndromes account for approximately 10% of cancer cases. Next generation sequencing (NGS) based multi-gene targeted panels is now a frontline approach to identify pathogenic mutations in cancer predisposition genes in high-risk families. Recent evolvement of NGS technologies have allowed simultaneous detection of sequence and copy number variants (CNVs) using a single platform. In this study, we have analyzed frequency and nature of sequence variants and CNVs, in a Canadian cohort of patients, suspected with hereditary cancer syndrome, referred for genetic testing following specific genetic testing guidelines based on patient's personal and/or family history of cancer. Methods A 2870 patients were subjected to a single NGS based multi-gene targeted hereditary cancer panel testing algorithm to identify sequence variants and CNVs in cancer predisposition genes at our reference laboratory in Southwestern Ontario. CNVs identified by NGS were confirmed by alternative techniques like Multiplex ligation-dependent probe amplification (MLPA). Results A 15% (431/2870) patients had a pathogenic variant and 36% (1032/2870) had a variant of unknown significance (VUS), in a cancer susceptibility gene. A total of 287 unique pathogenic variant were identified, out of which 23 (8%) were novel. CNVs identified by NGS based approach accounted for 9.5% (27/287) of pathogenic variants, confirmed by alternate techniques with high accuracy. Conclusion This study emphasizes the utility of NGS based targeted testing approach to identify both sequence and CNVs in patients suspected with hereditary cancer syndromes in clinical setting and expands the mutational spectrum of high and moderate penetrance cancer predisposition genes.
Collapse
Affiliation(s)
- Pratibha Bhai
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada
| | - Michael A Levy
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada
| | - Kathleen Rooney
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada
| | - Deanna Alexis Carere
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada
| | - Jack Reilly
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Jennifer Kerkhof
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada
| | - Michael Volodarsky
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada
| | - Alan Stuart
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada
| | - Mike Kadour
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.,Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, ON, Canada
| | - Karen Panabaker
- Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre, London, ON, Canada
| | - Laila C Schenkel
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Hanxin Lin
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Peter Ainsworth
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.,Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, ON, Canada
| | - Bekim Sadikovic
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| |
Collapse
|
13
|
Zhang L, Qin Z, Huang T, Tam B, Ruan Y, Guo M, Wu X, Li J, Zhao B, Chian JS, Wang X, Wang L, Wang SM. Prevalence and spectrum of DNA mismatch repair gene variation in the general Chinese population. J Med Genet 2021; 59:652-661. [PMID: 34172528 PMCID: PMC9252855 DOI: 10.1136/jmedgenet-2021-107886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/06/2021] [Indexed: 01/18/2023]
Abstract
Background Identifying genetic disease-susceptible individuals through population screening is considered as a promising approach for disease prevention. DNA mismatch repair (MMR) genes including MLH1, MSH2, MSH6 and PMS2 play essential roles in maintaining microsatellite stability through DNA mismatch repair, and pathogenic variation in MMR genes causes microsatellite instability and is the genetic predisposition for cancer as represented by the Lynch syndrome. While the prevalence and spectrum of MMR variation has been extensively studied in cancer, it remains largely elusive in the general population. Lack of the knowledge prevents effective prevention for MMR variation–caused cancer. In the current study, we addressed the issue by using the Chinese population as a model. Methods We performed extensive data mining to collect MMR variant data from 18 844 ethnic Chinese individuals and comprehensive analyses for the collected MMR variants to determine its prevalence, spectrum and features of the MMR data in the Chinese population. Results We identified 17 687 distinct MMR variants. We observed substantial differences of MMR variation between the general Chinese population and Chinese patients with cancer, identified highly Chinese-specific MMR variation through comparing MMR data between Chinese and non-Chinese populations, predicted the enrichment of deleterious variants in the unclassified Chinese-specific MMR variants, determined MMR pathogenic prevalence of 0.18% in the general Chinese population and determined that MMR variation in the general Chinese population is evolutionarily neutral. Conclusion Our study provides a comprehensive view of MMR variation in the general Chinese population, a resource for biological study of human MMR variation, and a reference for MMR-related cancer applications.
Collapse
Affiliation(s)
- Li Zhang
- University of Macau, Taipa, Macau, China
| | - Zixin Qin
- University of Macau, Taipa, Macau, China
| | - Teng Huang
- University of Macau, Taipa, Macau, China
| | | | | | - Maoni Guo
- University of Macau, Taipa, Macau, China
| | | | - Jiaheng Li
- University of Macau, Taipa, Macau, China
| | - Bojin Zhao
- University of Macau, Taipa, Macau, China
| | | | | | - Lei Wang
- University of Macau, Taipa, Macau, China
| | | |
Collapse
|
14
|
Rofes P, Del Valle J, Torres-Esquius S, Feliubadaló L, Stradella A, Moreno-Cabrera JM, López-Doriga A, Munté E, De Cid R, Campos O, Cuesta R, Teulé Á, Grau È, Sanz J, Capellá G, Díez O, Brunet J, Balmaña J, Lázaro C. BARD1 Pathogenic Variants are Associated with Triple-Negative Breast Cancer in a Spanish Hereditary Breast and Ovarian Cancer Cohort. Genes (Basel) 2021; 12:genes12020150. [PMID: 33498765 PMCID: PMC7911518 DOI: 10.3390/genes12020150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Only a small fraction of hereditary breast and/or ovarian cancer (HBOC) cases are caused by germline variants in the high-penetrance breast cancer 1 and 2 genes (BRCA1 and BRCA2). BRCA1-associated ring domain 1 (BARD1), nuclear partner of BRCA1, has been suggested as a potential HBOC risk gene, although its prevalence and penetrance are variable according to populations and type of tumor. We aimed to investigate the prevalence of BARD1 truncating variants in a cohort of patients with clinical suspicion of HBOC. A comprehensive BARD1 screening by multigene panel analysis was performed in 4015 unrelated patients according to our regional guidelines for genetic testing in hereditary cancer. In addition, 51,202 Genome Aggregation Database (gnomAD) non-Finnish, non-cancer European individuals were used as a control population. In our patient cohort, we identified 19 patients with heterozygous BARD1 truncating variants (0.47%), whereas the frequency observed in the gnomAD controls was 0.12%. We found a statistically significant association of truncating BARD1 variants with overall risk (odds ratio (OR) = 3.78; CI = 2.10–6.48; p = 1.16 × 10−5). This association remained significant in the hereditary breast cancer (HBC) group (OR = 4.18; CI = 2.10–7.70; p = 5.45 × 10−5). Furthermore, deleterious BARD1 variants were enriched among triple-negative BC patients (OR = 5.40; CI = 1.77–18.15; p = 0.001) compared to other BC subtypes. Our results support the role of BARD1 as a moderate penetrance BC predisposing gene and highlight a stronger association with triple-negative tumors.
Collapse
Affiliation(s)
- Paula Rofes
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28929 Madrid, Spain
| | - Jesús Del Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28929 Madrid, Spain
| | - Sara Torres-Esquius
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Medical Oncology Department, University Hospital Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (S.T.-E.); (J.B.)
| | - Lídia Feliubadaló
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28929 Madrid, Spain
| | - Agostina Stradella
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Medical Oncology Department, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
| | - José Marcos Moreno-Cabrera
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28929 Madrid, Spain
| | - Adriana López-Doriga
- Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology, 08908 L’Hospitalet de Llobregat, Spain;
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Elisabet Munté
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28929 Madrid, Spain
| | - Rafael De Cid
- Genomes for Life-GCAT Lab Group, IGTP, Institut Germans Trias i Pujol (IGTP), 08916 Badalona, Spain;
| | - Olga Campos
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
| | - Raquel Cuesta
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
| | - Álex Teulé
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
| | - Èlia Grau
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Hereditary Cancer Program, Catalan Institute of Oncology, IGTP, 08916 Badalona, Spain
| | - Judit Sanz
- Genetic Counselling Unit, Medical Oncology Department, Althaia Xarxa Assistencial Universitària de Manresa, 08243 Manresa, Spain;
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28929 Madrid, Spain
| | - Orland Díez
- Catalan Health Institute, Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain;
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Joan Brunet
- Medical Oncology Department, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBGI, 17007 Girona, Spain
- Medical Sciences Department, School of Medicine, University of Girona, 17007 Girona, Spain
| | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Medical Oncology Department, University Hospital Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (S.T.-E.); (J.B.)
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28929 Madrid, Spain
- Correspondence: ; Tel.: +34-93-2607145
| |
Collapse
|
15
|
Stolarova L, Kleiblova P, Janatova M, Soukupova J, Zemankova P, Macurek L, Kleibl Z. CHEK2 Germline Variants in Cancer Predisposition: Stalemate Rather than Checkmate. Cells 2020; 9:cells9122675. [PMID: 33322746 PMCID: PMC7763663 DOI: 10.3390/cells9122675] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Germline alterations in many genes coding for proteins regulating DNA repair and DNA damage response (DDR) to DNA double-strand breaks (DDSB) have been recognized as pathogenic factors in hereditary cancer predisposition. The ATM-CHEK2-p53 axis has been documented as a backbone for DDR and hypothesized as a barrier against cancer initiation. However, although CHK2 kinase coded by the CHEK2 gene expedites the DDR signal, its function in activation of p53-dependent cell cycle arrest is dispensable. CHEK2 mutations rank among the most frequent germline alterations revealed by germline genetic testing for various hereditary cancer predispositions, but their interpretation is not trivial. From the perspective of interpretation of germline CHEK2 variants, we review the current knowledge related to the structure of the CHEK2 gene, the function of CHK2 kinase, and the clinical significance of CHEK2 germline mutations in patients with hereditary breast, prostate, kidney, thyroid, and colon cancers.
Collapse
Affiliation(s)
- Lenka Stolarova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Petra Kleiblova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800 Prague, Czech Republic;
| | - Marketa Janatova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
| | - Jana Soukupova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
| | - Petra Zemankova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
| | - Libor Macurek
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Zdenek Kleibl
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
- Correspondence: ; Tel.: +420-22496-745
| |
Collapse
|
16
|
Alenezi WM, Fierheller CT, Recio N, Tonin PN. Literature Review of BARD1 as a Cancer Predisposing Gene with a Focus on Breast and Ovarian Cancers. Genes (Basel) 2020; 11:E856. [PMID: 32726901 PMCID: PMC7464855 DOI: 10.3390/genes11080856] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Soon after the discovery of BRCA1 and BRCA2 over 20 years ago, it became apparent that not all hereditary breast and/or ovarian cancer syndrome families were explained by germline variants in these cancer predisposing genes, suggesting that other such genes have yet to be discovered. BRCA1-associated ring domain (BARD1), a direct interacting partner of BRCA1, was one of the earliest candidates investigated. Sequencing analyses revealed that potentially pathogenic BARD1 variants likely conferred a low-moderate risk to hereditary breast cancer, but this association is inconsistent. Here, we review studies of BARD1 as a cancer predisposing gene and illustrate the challenge of discovering additional cancer risk genes for hereditary breast and/or ovarian cancer. We selected peer reviewed research articles that focused on three themes: (i) sequence analyses of BARD1 to identify potentially pathogenic germline variants in adult hereditary cancer syndromes; (ii) biological assays of BARD1 variants to assess their effect on protein function; and (iii) association studies of BARD1 variants in family-based and case-control study groups to assess cancer risk. In conclusion, BARD1 is likely to be a low-moderate penetrance breast cancer risk gene.
Collapse
Affiliation(s)
- Wejdan M. Alenezi
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada; (W.M.A.); (C.T.F.); (N.R.)
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medical Laboratory Technology, Taibah University, Medina 42353, Saudi Arabia
| | - Caitlin T. Fierheller
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada; (W.M.A.); (C.T.F.); (N.R.)
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Neil Recio
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada; (W.M.A.); (C.T.F.); (N.R.)
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Patricia N. Tonin
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada; (W.M.A.); (C.T.F.); (N.R.)
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|