1
|
Sarkaria JN, Ballman KV, Kizilbash SH, Sulman EP, Giannini C, Friday BB, Butowski NA, Mohile NA, Piccioni DE, Battiste JD, Drappatz J, Campian JL, Mashru S, Jaeckle KA, O’Brien BJ, Dixon JG, Kabat BF, Laack NL, Hu LS, Kaufmann T, Kumthekar P, Ellingson BM, Anderson SK, Galanis E. Efficacy of Adding Veliparib to Temozolomide for Patients With MGMT-Methylated Glioblastoma: A Randomized Clinical Trial. JAMA Oncol 2024; 10:1637-1644. [PMID: 39480453 PMCID: PMC11528341 DOI: 10.1001/jamaoncol.2024.4361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 11/03/2024]
Abstract
Importance The prognosis for patients with glioblastoma is poor following standard therapy with surgical resection, radiation, temozolomide, and tumor-treating fields. Objectives To evaluate the combination of veliparib and temozolomide in glioblastoma based on preclinical data demonstrating significant chemosensitizing effects of the polyadenosine diphosphate-ribose polymerase 1/2 inhibitor veliparib when combined with temozolomide. Design, Setting, and Participants Patients with newly diagnosed glioblastoma with MGMT promoter hypermethylation who had completed concomitant radiation and temozolomide were enrolled between December 15, 2014, and December 15, 2018, in this Alliance for Clinical Trials in Oncology trial. The data for this analysis were locked on April 21, 2023. Interventions Patients were randomized and treated with standard adjuvant temozolomide (150-200 mg/m2 orally, days 1-5) combined with either placebo or veliparib (40 mg orally, twice daily, days 1-7) for 6 cycles. Main Outcomes and Measures The primary end point for the phase 3 portion of the trial was overall survival (OS). Results There were 322 patients randomized during the phase 2 accrual period and an additional 125 patients randomized to complete the phase 3 accrual, for a total of 447 patients in the final phase 3 analysis. The median (range) age for patients was 60 (20-85) years and 190 patients (42.5%) were female. The median OS was 24.8 months (90% CI, 22.6-27.7) for the placebo arm and 28.1 months (90% CI, 24.3-33.3) for the veliparib arm (P = .17). The difference in survival did not meet the prespecified efficacy end point. However, there was a separation of the survival curves that favored the veliparib arm over 24 to 48 months of follow-up. The experimental combination was well tolerated with an acceptable elevation in grade 3 or 4 hematologic toxic effects. Conclusions and Relevance This trial found that adding veliparib to adjuvant temozolomide did not significantly extend OS in patients with newly diagnosed, MGMT-hypermethylated glioblastoma. Trial Registration ClinicalTrials.gov Identifier: NCT02152982.
Collapse
Affiliation(s)
| | | | | | - Erik P. Sulman
- New York University Grossman School of Medicine, New York, New York
| | | | | | | | | | | | | | - Jan Drappatz
- University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Karampuri A, Jakkula BK, Perugu S. ResisenseNet hybrid neural network model for predicting drug sensitivity and repurposing in breast Cancer. Sci Rep 2024; 14:23949. [PMID: 39397003 PMCID: PMC11471817 DOI: 10.1038/s41598-024-71076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/23/2024] [Indexed: 10/15/2024] Open
Abstract
Breast cancer remains a leading cause of mortality among women worldwide, with drug resistance driven by transcription factors and mutations posing significant challenges. To address this, we present ResisenseNet, a predictive model for drug sensitivity and resistance. ResisenseNet integrates transcription factor expression, genomic markers, drugs, and molecular descriptors, employing a hybrid architecture of 1D-CNN + LSTM and DNN to effectively learn long-range and temporal patterns from amino acid sequences and transcription factor data. The model demonstrated exceptional predictive accuracy, achieving a validation accuracy of 0.9794 and a loss value of 0.042. Comprehensive validation included comparisons with state-of-the-art models and ablation studies, confirming the robustness of the developed architecture. ResisenseNet has been applied to repurpose existing anticancer drugs across 14 different cancers, with a focus on breast cancer. Among the malignancies studied, drugs targeting Low-grade Glioma (LGG) and Lung Adenocarcinoma (LUAD) showed increased sensitivity to breast cancer as per ResisenseNet's assessment. Further evaluation of the predicted sensitive drugs revealed that 14 had no prior history of anticancer activity against breast cancer. These drugs target key signaling pathways involved in breast cancer, presenting novel therapeutic opportunities. ResisenseNet addresses drug resistance by filtering ineffective compounds and enhancing chemotherapy for breast cancer. In vitro studies on sensitive drugs provide valuable insights into breast cancer prognosis, contributing to improved treatment strategies.
Collapse
Affiliation(s)
- Anush Karampuri
- Department of Biotechnology, National Institute of Technology, Warangal, 500604, India
| | - Bharath Kumar Jakkula
- Department of Biotechnology, National Institute of Technology, Warangal, 500604, India
| | - Shyam Perugu
- Department of Biotechnology, National Institute of Technology, Warangal, 500604, India.
| |
Collapse
|
3
|
Bondar D, Karpichev Y. Poly(ADP-Ribose) Polymerase (PARP) Inhibitors for Cancer Therapy: Advances, Challenges, and Future Directions. Biomolecules 2024; 14:1269. [PMID: 39456202 PMCID: PMC11506039 DOI: 10.3390/biom14101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Poly(ADP-ribose) polymerases (PARPs) are crucial nuclear proteins that play important roles in various cellular processes, including DNA repair, gene transcription, and cell death. Among the 17 identified PARP family members, PARP1 is the most abundant enzyme, with approximately 1-2 million molecules per cell, acting primarily as a DNA damage sensor. It has become a promising biological target for anticancer drug studies. Enhanced PARP expression is present in several types of tumors, such as melanomas, lung cancers, and breast tumors, correlating with low survival outcomes and resistance to treatment. PARP inhibitors, especially newly developed third-generation inhibitors currently undergoing Phase II clinical trials, have shown efficacy as anticancer agents both as single drugs and as sensitizers for chemo- and radiotherapy. This review explores the properties, characteristics, and challenges of PARP inhibitors, discussing their development from first-generation to third-generation compounds, more sustainable synthesis methods for discovery of new anti-cancer agents, their mechanisms of therapeutic action, and their potential for targeting additional biological targets beyond the catalytic active site of PARP proteins. Perspectives on green chemistry methods in the synthesis of new anticancer agents are also discussed.
Collapse
Affiliation(s)
| | - Yevgen Karpichev
- Department of Chemistry and Biotechnology, Tallinn University of Technology (TalTech), Akadeemia tee 15, 12618 Tallinn, Estonia;
| |
Collapse
|
4
|
Bhamidipati D, Haro-Silerio JI, Yap TA, Ngoi N. PARP inhibitors: enhancing efficacy through rational combinations. Br J Cancer 2023; 129:904-916. [PMID: 37430137 PMCID: PMC10491787 DOI: 10.1038/s41416-023-02326-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/18/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023] Open
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPi) have significantly changed the treatment landscape for tumours harbouring defects in genes involved in homologous repair (HR) such as BRCA1 and BRCA2. Despite initial responsiveness to PARPi, tumours eventually develop resistance through a variety of mechanisms. Rational combination strategies involving PARPi have been explored and are in various stages of clinical development. PARPi combinations have the potential to enhance efficacy through synergistic activity, and also potentially sensitise innately PARPi-resistant tumours to PARPi. Initial combinations involving PARPi with chemotherapy were hindered by significant overlapping haematologic toxicity, but newer combinations with fewer toxicities and more targeted approaches are undergoing evaluation. In this review, we discuss the mechanisms of PARPi resistance and review the rationale and clinical evidence for various PARPi combinations including combinations with chemotherapy, immunotherapy, and targeted therapies. We also highlight emerging PARPi combinations with promising preclinical evidence.
Collapse
Affiliation(s)
- Deepak Bhamidipati
- Department of Cancer Medicine Fellowship Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Natalie Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| |
Collapse
|
5
|
Dilmac S, Ozpolat B. Mechanisms of PARP-Inhibitor-Resistance in BRCA-Mutated Breast Cancer and New Therapeutic Approaches. Cancers (Basel) 2023; 15:3642. [PMID: 37509303 PMCID: PMC10378018 DOI: 10.3390/cancers15143642] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The recent success of Poly (ADP-ribose) polymerase (PARP) inhibitors has led to the approval of four different PARP inhibitors for the treatment of BRCA1/2-mutant breast and ovarian cancers. About 40-50% of BRCA1/2-mutated patients do not respond to PARP inhibitors due to a preexisting innate or intrinsic resistance; the majority of patients who initially respond to the therapy inevitably develop acquired resistance. However, subsets of patients experience a long-term response (>2 years) to treatment with PARP inhibitors. Poly (ADP-ribose) polymerase 1 (PARP1) is an enzyme that plays an important role in the recognition and repair of DNA damage. PARP inhibitors induce "synthetic lethality" in patients with tumors with a homologous-recombination-deficiency (HRD). Several molecular mechanisms have been identified as causing PARP-inhibitor-resistance. In this review, we focus on the molecular mechanisms underlying the PARP-inhibitor-resistance in BRCA-mutated breast cancer and summarize potential therapeutic strategies to overcome the resistance mechanisms.
Collapse
Affiliation(s)
- Sayra Dilmac
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Houston Methodist Neal Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Yu X, Zhu L, Wang T, Li L, Liu J, Che G, Zhou Q. Enhancing the anti-tumor response by combining DNA damage repair inhibitors in the treatment of solid tumors. Biochim Biophys Acta Rev Cancer 2023; 1878:188910. [PMID: 37172653 DOI: 10.1016/j.bbcan.2023.188910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/12/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The anti-cancer efficacy of anti-malignancy therapies is related to DNA damage. However, DNA damage-response mechanisms can repair DNA damage, failing anti-tumor therapy. The resistance to chemotherapy, radiotherapy, and immunotherapy remains a clinical challenge. Thus, new strategies to overcome these therapeutic resistance mechanisms are needed. DNA damage repair inhibitors (DDRis) continue to be investigated, with polyadenosine diphosphate ribose polymerase inhibitors being the most studied inhibitors. Evidence of their clinical benefits and therapeutic potential in preclinical studies is growing. In addition to their potential as a monotherapy, DDRis may play an important synergistic role with other anti-cancer therapies or in reversing acquired treatment resistance. Here we review the impact of DDRis on solid tumors and the potential value of combinations of different treatment modalities with DDRis for solid tumors.
Collapse
Affiliation(s)
- Xianzhe Yu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China; Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, No. 10 Qinyun Nan Street, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Lingling Zhu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Ting Wang
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Lu Li
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Jiewei Liu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Guowei Che
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Qinghua Zhou
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
7
|
Rocha Pinheiro SL, Lemos FFB, Marques HS, Silva Luz M, de Oliveira Silva LG, Faria Souza Mendes dos Santos C, da Costa Evangelista K, Calmon MS, Sande Loureiro M, Freire de Melo F. Immunotherapy in glioblastoma treatment: Current state and future prospects. World J Clin Oncol 2023; 14:138-159. [PMID: 37124134 PMCID: PMC10134201 DOI: 10.5306/wjco.v14.i4.138] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
Glioblastoma remains as the most common and aggressive malignant brain tumor, standing with a poor prognosis and treatment prospective. Despite the aggressive standard care, such as surgical resection and chemoradiation, median survival rates are low. In this regard, immunotherapeutic strategies aim to become more attractive for glioblastoma, considering its recent advances and approaches. In this review, we provide an overview of the current status and progress in immunotherapy for glioblastoma, going through the fundamental knowledge on immune targeting to promising strategies, such as Chimeric antigen receptor T-Cell therapy, immune checkpoint inhibitors, cytokine-based treatment, oncolytic virus and vaccine-based techniques. At last, it is discussed innovative methods to overcome diverse challenges, and future perspectives in this area.
Collapse
Affiliation(s)
- Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | | | - Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Matheus Sande Loureiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
8
|
Wang L, Evans JC, Ahmed L, Allen C. Folate receptor targeted nanoparticles containing niraparib and doxorubicin as a potential candidate for the treatment of high grade serous ovarian cancer. Sci Rep 2023; 13:3226. [PMID: 36828860 PMCID: PMC9958112 DOI: 10.1038/s41598-023-28424-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/18/2023] [Indexed: 02/26/2023] Open
Abstract
Combination chemotherapy is an established approach used to manage toxicities while eliciting an enhanced therapeutic response. Delivery of drug combinations at specific molar ratios has been considered a means to achieve synergistic effects resulting in improvements in efficacy while minimizing dose related adverse drug reactions. The benefits of this approach have been realized with the FDA approval of Vyxeos®, the first liposome formulation to deliver a synergistic drug combination leading to improved overall survival against standard of care. In the current study, we demonstrate the synergistic potential of the PARP inhibitor niraparib and doxorubicin for the treatment of ovarian cancer. Through in vitro screening in a panel of ovarian cancer cell lines, we find that niraparib and doxorubicin demonstrate consistent synergy/additivity at the majority of evaluated molar ratio combinations. Further to these findings, we report formulation of a nanoparticle encapsulating our identified synergistic combination. We describe a rational design process to achieve highly stable liposomes that are targeted with folate to folate-receptor-alpha, which is known to be overexpressed on the surface of ovarian cancer cells. With this approach, we aim to achieve targeted delivery of niraparib and doxorubicin at a pre-determined synergistic molar ratio via increased receptor-mediated endocytosis.
Collapse
Affiliation(s)
- Lucy Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - James C Evans
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Lubabah Ahmed
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
9
|
Guo L, Kong D, Liu J, Zhan L, Luo L, Zheng W, Zheng Q, Chen C, Sun S. Breast cancer heterogeneity and its implication in personalized precision therapy. Exp Hematol Oncol 2023; 12:3. [PMID: 36624542 PMCID: PMC9830930 DOI: 10.1186/s40164-022-00363-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Breast cancer heterogeneity determines cancer progression, treatment effects, and prognosis. However, the precise mechanism for this heterogeneity remains unknown owing to its complexity. Here, we summarize the origins of breast cancer heterogeneity and its influence on disease progression, recurrence, and therapeutic resistance. We review the possible mechanisms of heterogeneity and the research methods used to analyze it. We also highlight the importance of cell interactions for the origins of breast cancer heterogeneity, which can be further categorized into cooperative and competitive interactions. Finally, we provide new insights into precise individual treatments based on heterogeneity.
Collapse
Affiliation(s)
- Liantao Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Deguang Kong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Jianhua Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Ling Zhan
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Lan Luo
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Yunyan District, Guiyang, 550001, Guizhou, China
| | - Weijie Zheng
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Qingyuan Zheng
- Department of Urology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
10
|
Thein KZ, Thawani R, Kummar S. Combining Poly (ADP-Ribose) Polymerase (PARP) Inhibitors with Chemotherapeutic Agents: Promise and Challenges. Cancer Treat Res 2023; 186:143-170. [PMID: 37978135 DOI: 10.1007/978-3-031-30065-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Better understanding of molecular drivers and dysregulated pathways has furthered the concept of precision oncology and rational drug development. The role of DNA damage response (DDR) pathways has been extensively studied in carcinogenesis and as potential therapeutic targets to improve response to chemotherapy or overcome resistance. Treatment with small molecule inhibitors of PARP has resulted in clinical response and conferred survival benefit to patients with ovarian cancer, BRCA-mutant breast cancer, HRD-deficient prostate cancer and BRCA-mutant pancreatic cancer, leading to US Food and Drug Administration (FDA) approvals. However, the observed clinical benefit with single agent PARP inhibitors is limited to few tumor types within the relevant genetic context. Since DDR pathways are essential for repair of damage caused by cytotoxic agents, PARP inhibitors have been evaluated in combination with various chemotherapeutic agents to broaden the therapeutic application of this class of drugs. In this chapter, we discuss the combination of PARP inhibitors with different chemotherapeutics agents, clinical experience to date, lessons learnt, and future directions for this approach.
Collapse
Affiliation(s)
- Kyaw Zin Thein
- Comprehensive Cancer Centers of Nevada, Las Vegas, NV, USA
| | - Rajat Thawani
- Comprehensive Cancer Centers of Nevada, Las Vegas, NV, USA
| | - Shivaani Kummar
- DeArmond Endowed Chair of Cancer Research, Division of Hematology and Medical Oncology, Clinical and Translational Research, Knight Cancer Institute (KCI), Center for Experimental Therapeutics (KCI), Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, OC14HO, Portland, OR, 97239, USA.
| |
Collapse
|
11
|
Taurelli Salimbeni B, Corvaja C, Valenza C, Zagami P, Curigliano G. The triple negative breast cancer drugs graveyard: a review of failed clinical trials 2017-2022. Expert Opin Investig Drugs 2022; 31:1203-1226. [PMID: 36413823 DOI: 10.1080/13543784.2022.2151433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) accounts for 15-20% of breast cancers (BC) and has the worst prognosis. It is characterized by the absence of both hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2). TNBC has more limited therapeutic options compared to other subtypes, meaning that there is still a long way to go to discover target treatments. AREAS COVERED Our review aims to summarize phase II/III clinical trials enrolling patients with TNBC that have been published between 2017 and 2022 but failed to reach their primary endpoint. We here try to emphasize the limitations and weaknesses noted in negative studies and to point out unexpected results which might be useful to enhance the therapeutic approach to TNBC disease. EXPERT OPINION A deeper understanding of the mechanisms behind TNBC heterogeneity allowed to enhance the knowledge of new prognostic and predictive biomarkers of response. However, it is also through several failed clinical trials that we were able to define new therapeutic approaches which improved TNBC patients' clinical outcomes. Nowadays, we still need to overcome several difficulties to fully recognize different intracellular and extracellular pathways that crosstalk in TNBC and the mechanisms of resistance to identify novel tailored-patients' therapies.
Collapse
Affiliation(s)
- Beatrice Taurelli Salimbeni
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Clinical and Molecular Medicine, Oncology Unit, "la Sapienza" University of Rome, Azienda Ospedaliera Sant'Andrea, Rome, Italy
| | - Carla Corvaja
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | - Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Oncology and Haematology, University of Milan, Milan, Italy
| | - Paola Zagami
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Oncology and Haematology, University of Milan, Milan, Italy.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Oncology and Haematology, University of Milan, Milan, Italy
| |
Collapse
|
12
|
Paul S, Sinha S, Kundu CN. Targeting cancer stem cells in the tumor microenvironment: An emerging role of PARP inhibitors. Pharmacol Res 2022; 184:106425. [PMID: 36075511 DOI: 10.1016/j.phrs.2022.106425] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022]
Abstract
Cancer stem cells (CSCs) constitute a small population of cancer cells in the tumor microenvironment (TME), which are responsible for metastasis, angiogenesis, drug resistance, and cancer relapse. Understanding the key signatures and resistance mechanisms of CSCs may help in the development of novel chemotherapeutic strategies to specifically target CSCs in the TME. PARP inhibitors (PARPi) are known to enhance the chemosensitivity of cancer cells to other chemotherapeutic agents by inhibiting the DNA repair pathways and chromatin modulation. But their effects on CSCs are still unknown. Few studies have reported that PARPi can stall replication fork progression in CSCs. PARPi also have the potential to overcome chemoresistance in CSCs and anti-angiogenic potentiality as well. Previous reports have suggested that epigenetic drugs can synergistically ameliorate the anti-cancer activities of PARPi through epigenetic modulations. In this review, we have systematically discussed the effects of PARPi on different DNA repair pathways with respect to CSCs and also how CSCs can be targeted either as monotherapy or as a part of combination therapy. We have also talked about how PARPi can help in reversal of chemoresistance of CSCs and the role of PARPi in epigenetic modifications to hinder cancer progression. We have also elaborated on the aspects of research that need to be investigated for development of successful therapeutic interventions using PARPi to specifically target CSCs in the TME.
Collapse
Affiliation(s)
- Subarno Paul
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| | - Saptarshi Sinha
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
13
|
PARP Inhibitors for Breast Cancer: Germline BRCA1/2 and Beyond. Cancers (Basel) 2022; 14:cancers14174332. [PMID: 36077867 PMCID: PMC9454726 DOI: 10.3390/cancers14174332] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Poly-adenosine diphosphate ribose polymerase (PARP) inhibitors (PARPi) are effective against tumors with mutations in DNA repair genes, most commonly in the BRCA1 and BRCA2 genes. Because these tumors are unable to repair their DNA, PARPi have been used to target DNA repair pathways and are useful in the treatment of breast cancers with some of these alterations. There are two FDA-approved PARPi for patients with breast cancer—olaparib and talazoparib. The data on olaparib and talazoparib in the treatment of breast cancer are summarized in this review, and we also explore potential future applications of PARPi beyond inherited BRCA mutations. Abstract Poly-adenosine diphosphate ribose polymerase (PARP) inhibitors (PARPi) are approved for BRCA1/2 carriers with HER2-negative breast cancer in the adjuvant setting with a high risk of recurrence as well as the metastatic setting. However, the indications for PARPi are broader for patients with other cancer types (e.g., prostate and ovarian cancer), involving additional biomarkers (e.g., ATM, PALB2, and CHEK) and genomic instability scores. Herein, we summarize the data on PARPi and breast cancer and discuss their use beyond BRCA carriers.
Collapse
|
14
|
Fu X, Tan W, Song Q, Pei H, Li J. BRCA1 and Breast Cancer: Molecular Mechanisms and Therapeutic Strategies. Front Cell Dev Biol 2022; 10:813457. [PMID: 35300412 PMCID: PMC8921524 DOI: 10.3389/fcell.2022.813457] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer susceptibility gene 1 (BRCA1) is a tumor suppressor gene, which is mainly involved in the repair of DNA damage, cell cycle regulation, maintenance of genome stability, and other important physiological processes. Mutations or defects in the BRCA1 gene significantly increase the risk of breast, ovarian, prostate, and other cancers in carriers. In this review, we summarized the molecular functions and regulation of BRCA1 and discussed recent insights into the detection and treatment of BRCA1 mutated breast cancer.
Collapse
Affiliation(s)
- Xiaoyu Fu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Tan
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|