1
|
Ding S, Yang R, Meng J, Guan X, Hong Y, Xu J, Qu L, Ji J, Yi W, Zou Q, Long Q. Prognostic and immune correlation of IDO1 promoter methylation in breast cancer. Sci Rep 2024; 14:27836. [PMID: 39537860 PMCID: PMC11561124 DOI: 10.1038/s41598-024-79149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) plays an important role in the initiation and progression of breast cancer. DNA promoter methylation status has the potential to be used as a biomarker for predicting the response to immunotherapy. This study aimed to investigate the biological and clinical significance of IDO1 promoter methylation in breast cancer. We analyzed IDO1 promoter methylation and its relationship with survival, patient prognosis, immune cell infiltration, immune-related pathways, and the expression of key immunomodulators via bioinformatics methods in The Cancer Genome Atlas (TCGA) breast cancer cohort (779 samples). Furthermore, the IDO1 promoter methylation status and expression of the IDO1 gene in the basal subtype of breast cancer were investigated in vitro via a methylation-specific PCR (MSP) assay and quantitative polymerase chain reaction (qPCR). The IDO1 promoter was significantly hypomethylated in the basal subtype of breast cancer tissues compared with normal adjacent tissues, and this effect was correlated with high expression of IDO1, resulting in abundant immune cell infiltration, activation of immune-related pathways, and upregulation of key immunomodulators. The influence of IDO1 promoter hypomethylation on the prognosis of patients with breast cancer was also investigated. The promoter hypomethylation of IDO1 in the basal subtype of breast cancer and its correlation with high expression of IDO1 were also investigated in vitro. Our results showed that IDO1 promoter methylation is vital for regulating its expression, which leads to the development of a tumor microenvironment in breast cancer. IDO1 promoter methylation and expression are associated with prognosis, immune cell infiltration, immune-related pathways, and immunomodulator expression in breast cancer. Our findings provide evidence for the validation of IDO1 promoter methylation as a promising biomarker to predict responses to immune checkpoint inhibitors in patients with breast cancer.
Collapse
Affiliation(s)
- Shirong Ding
- Department of Oncology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Ruozhu Yang
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, 410011, China
| | - Jiahao Meng
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, 410011, China
| | - Xinyu Guan
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, 410011, China
| | - Yue Hong
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, 410011, China
| | - Jiachi Xu
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, 410011, China
| | - Limeng Qu
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, 410011, China
| | - Jingfen Ji
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, 410011, China
| | - Wenjun Yi
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, 410011, China
| | - Qiongyan Zou
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, 410011, China.
| | - Qian Long
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, 410011, China.
| |
Collapse
|
2
|
Han Y, Zhou Y, Wu Z, Liu L, Han C. Case report: Successful treatment of advanced urothelial carcinoma with trophoblastic differentiation using Tislelizumab and Disitamab vedotin. Heliyon 2024; 10:e38518. [PMID: 39397900 PMCID: PMC11470431 DOI: 10.1016/j.heliyon.2024.e38518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
Background Urothelial carcinoma with trophoblastic differentiation represents an uncommon and aggressive malignancy for which there is currently no established standard treatment. Systemic chemotherapy as the main treatment has limited efficacy. However, recent research has demonstrated significant improvements in patient survival with the use of immune checkpoint inhibitors and antibody-drug conjugates. To our knowledge, this case represents the first successful application of an immune checkpoint inhibitor (Tislelizumab) combined with human epidermal growth factor receptor 2-targeting antibody-drug conjugate (Disitamab vedotin) in the treatment of advanced urothelial carcinoma with trophoblastic differentiation. Case report We describe the case of a 36-year-old male patient diagnosed with urothelial carcinoma with trophoblastic differentiation, showing high expression of programmed death-ligand 1. Tumor progression occurred after six cycles of Tislelizumab combined with chemotherapy (gemcitabine and cisplatin) followed by five cycles of Tislelizumab monotherapy. Re-biopsy confirmed metastatic urothelial carcinoma with trophoblastic differentiation, now with epidermal growth factor receptor 2 overexpression. Treatment with Disitamab vedotin in combination with Tislelizumab resulted in a biochemical and imaging complete response, leading to an overall survival exceeding 24 months. Notably, no grade 3 or 4 adverse events were observed during treatment. Discussion The prognosis of advanced urothelial carcinoma with trophoblastic differentiation is unfavorable, and the available therapeutic options are limited. Combining Tislelizumab with Disitamab vedotin presents a promising anti-tumor strategy that warrants further investigation.
Collapse
Affiliation(s)
- Yaqian Han
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, PR China
| | - Yujuan Zhou
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, PR China
| | - Zheng Wu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, PR China
| | - Lin Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, PR China
| | - Chen Han
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, PR China
| |
Collapse
|
3
|
Zhang R, Su C, Jia Y, Xing M, Jin S, Zong H. Molecular mechanisms of HER2-targeted therapy and strategies to overcome the drug resistance in colorectal cancer. Biomed Pharmacother 2024; 179:117363. [PMID: 39236476 DOI: 10.1016/j.biopha.2024.117363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
HER2 amplification is one of the mechanisms that induce drug resistance to anti-EGFR therapy in colorectal cancer. In recent years, data from several randomized clinical trials show that anti-HER2 therapies improved the prognosis of patients with HER2-positive colorectal cancer. These results indicate that HER2 is a promising therapeutic target in advanced colorectal cancer. Despite the anti-HER2 therapies including monoclonal antibodies, tyrosine kinase inhibitors, and antibody-drug conjugates improving the outcomes, less than 30 % of the patients achieve objective response and eventually have drug resistance. It is necessary to explore the primary and secondary mechanisms for the resistance to anti-HER2 therapies, which will pave the way to overcome the drug resistance. Several studies have reported the potential mechanisms for the resistance to anti-HER2 therapies. In this review, we present a comprehensive overview of the recent advances in clinical research, mechanisms of treatment resistance, and strategies for reversing resistance in HER2-positive colorectal cancer patients.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Chang Su
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Yongliang Jia
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China.
| | - Menglu Xing
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Shuiling Jin
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Hong Zong
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
4
|
Xu G, Liu W, Wang Y, Wei X, Liu F, He Y, Zhang L, Song Q, Li Z, Wang C, Xu R, Chen B. CMG901, a Claudin18.2-specific antibody-drug conjugate, for the treatment of solid tumors. Cell Rep Med 2024; 5:101710. [PMID: 39232496 PMCID: PMC11528232 DOI: 10.1016/j.xcrm.2024.101710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/31/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Claudin18.2 has been recently recognized as a potential therapeutic target for gastric/gastroesophageal junction or pancreatic cancer. Here, we develop a Claudin18.2-directed antibody-drug conjugate (ADC), CMG901, with a potent microtubule-targeting agent MMAE (monomethyl auristatin E) and evaluate its preclinical profiles. In vitro studies show that CMG901 binds specifically to Claudin18.2 on the cell surface and kills tumor cells through direct cytotoxicity, antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), and bystander killing activity. In vivo pharmacological studies show significant antitumor activity in patient-derived xenograft (PDX) models. Toxicity studies show that the major adverse effects related to CMG901 are reversible hematopoietic changes attributed to MMAE. The highest non-severely toxic dose (HNSTD) is 6 mg/kg in cynomolgus monkeys and 10 mg/kg in rats once every 3 weeks. CMG901's favorable preclinical profile supports its entry into the human clinical study. CMG901 is currently under phase 3 investigation in patients with advanced gastric/gastroesophageal junction adenocarcinoma expressing Claudin18.2 (NCT06346392).
Collapse
Affiliation(s)
- Gang Xu
- Research and Development Department, Keymed Biosciences (Chengdu) Limited, Chengdu, Sichuan 610219, China
| | - Wei Liu
- Research and Development Department, Keymed Biosciences (Chengdu) Limited, Chengdu, Sichuan 610219, China
| | - Ying Wang
- Research and Development Department, Keymed Biosciences (Chengdu) Limited, Chengdu, Sichuan 610219, China
| | - Xiaoli Wei
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Furong Liu
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Yanyun He
- Research and Development Department, Keymed Biosciences (Chengdu) Limited, Chengdu, Sichuan 610219, China
| | - Libo Zhang
- Research and Development Department, Keymed Biosciences (Chengdu) Limited, Chengdu, Sichuan 610219, China
| | - Qin Song
- Research and Development Department, Keymed Biosciences (Chengdu) Limited, Chengdu, Sichuan 610219, China
| | - Zhiyao Li
- School of Biological Sciences, Nanyang Technological University 60 Nanyang Drive, Singapore 637551, Singapore
| | - Changyu Wang
- Research and Development Department, Keymed Biosciences (Chengdu) Limited, Chengdu, Sichuan 610219, China
| | - Ruihua Xu
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong 510060, China.
| | - Bo Chen
- Research and Development Department, Keymed Biosciences (Chengdu) Limited, Chengdu, Sichuan 610219, China.
| |
Collapse
|
5
|
Feng H, Bi S, Sun S, Yang H, Zhou H, Mao J, Li N, Yang F. Complete response to disitamab vedotin in HER2-low metastatic endometrial carcinoma: a case report and review of the literature. Front Oncol 2024; 14:1367140. [PMID: 39351350 PMCID: PMC11439626 DOI: 10.3389/fonc.2024.1367140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024] Open
Abstract
Endometrial cancer (EC) is one of the most common gynecologic malignancies with increasing morbidity. The prognosis for patients diagnosed with early-stage EC remains favorable; however, for patients with recurrent or metastatic EC, the prognosis is poor and treatment options, until recently, are limited. Antibody drug conjugates (ADCs) represent innovative strategies in cancer treatment; however, there are less investigations regarding their efficacy in EC. This report describes an EC case with low human epidermal growth factor receptor 2 (HER2) immunohistochemistry (IHC) expression score (IHC 2+) that experienced recurrent metastasis in the abdominal and peritoneal following post-surgical chemotherapy and radiotherapy. Subsequently, the commencement of HER2-targeted ADC, disitamab vedotin (RC48; 2.5 mg/kg), administered intravenously every two weeks, was initiated. The tumor lesions shrunk markedly after three cycles of treatment and disappeared by the completion of ten cycles of therapy. The patient is still in remission at present. The current findings imply the potential efficacy of HER2-targeted ADCs for patients with HER2-low metastatic EC.
Collapse
Affiliation(s)
- Hu Feng
- Department of Oncology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Shasha Bi
- Department of Pathology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Shanshan Sun
- Department of Oncology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Hongbo Yang
- Department of Oncology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Haoxing Zhou
- Department of Oncology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Jingjing Mao
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, China
| | - Na Li
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, China
| | - Fujun Yang
- Department of Oncology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| |
Collapse
|
6
|
Yang Y, Zheng Y, Sun X, Zhao A, Wu Y. Antibody drug conjugate, a level-up version of monoclonal antibody? Int J Surg 2024; 110:5944-5948. [PMID: 38833359 PMCID: PMC11392205 DOI: 10.1097/js9.0000000000001748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024]
Affiliation(s)
- Yuqi Yang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center,West China Hospital, Sichuan University
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yue Zheng
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center,West China Hospital, Sichuan University
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University
| | - Xu Sun
- Department of Hematology West China Hospital, Sichuan University
| | - Ailin Zhao
- Department of Hematology West China Hospital, Sichuan University
| | - Yijun Wu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center,West China Hospital, Sichuan University
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University
| |
Collapse
|
7
|
Chiba Y, Kojima Y, Yazaki S, Yoshida H, Takamizawa S, Kitadai R, Saito A, Okuma HS, Nishikawa T, Shimoi T, Sudo K, Noguchi E, Uno M, Ishikawa M, Kato T, Fujiwara Y, Yonemori K. Trop-2 expression and the tumor immune microenvironment in cervical cancer. Gynecol Oncol 2024; 187:51-57. [PMID: 38723340 DOI: 10.1016/j.ygyno.2024.04.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/02/2024] [Accepted: 04/23/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE Trophoblast Cell Surface Antigen 2 (Trop-2) is a transmembrane glycoprotein that is overexpressed in various cancers, with immunological significance as a target for tumor-reactive T-cells. We aimed to investigate the association between the expression of Trop-2 and the tumor immune microenvironment in cervical cancer. METHODS The study included 123 patients with cervical cancer who underwent primary surgery between 2000 and 2020 in our hospital. Trop-2 expression was evaluated using anti-Trop-2 monoclonal antibody clone MAB650. Immune biomarkers, including PD-L1 (22C3), CD3 (PS1), and CD8 (4B11), were also evaluated. Trop-2 and PD-L1 positivity were defined by an H-score ≥ 10 and a combined positive score (CPS) ≥1, respectively. Tumor-infiltrating lymphocytes (TILs) were assessed in the five selected independent areas. The correlation between Trop-2 expression and immune biomarkers was analyzed. RESULTS The cohort comprised patients with squamous cell carcinoma (SCC) (54.5%) and non-SCC (45.5%). Trop-2 was positive in 84.6% of samples and more commonly expressed in SCC (SCC vs. non-SCC; 97.0% vs. 69.6%, p < 0.001). Intratumoral CD3+ and CD8 + TILs were significantly more common in Trop-2-positive cases (CD3, Mann-Whitney U = 383, p < 0.0001; CD8, U = 442, p < 0.0001). Additionally, significant positive correlations were found between the Trop-2 H-score and immune markers (CD3 + TILs, r = 0.295, p < 0.001; CD8 + TILs, r = 0.267, p = 0.001; PD-L1 CPS, r = 0.178, p = 0.025). No significant associations were detected between TILs and other clinicopathological features, including prognosis. CONCLUSION Expression of Trop-2 in cervical cancer is associated with increased levels of intratumoral TILs, indicating the potential of Trop-2 targeted therapy alone or in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Yohei Chiba
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan.
| | - Yuki Kojima
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan.
| | - Shu Yazaki
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan.
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan.
| | | | - Rui Kitadai
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan.
| | - Ayumi Saito
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan.
| | | | - Tadaaki Nishikawa
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan.
| | - Tatsunori Shimoi
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan.
| | - Kazuki Sudo
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan.
| | - Emi Noguchi
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan.
| | - Masaya Uno
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan.
| | - Mitsuya Ishikawa
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan.
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan.
| | - Yasuhiro Fujiwara
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan.
| | - Kan Yonemori
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan.
| |
Collapse
|
8
|
Jiang M, Li Q, Xu B. Spotlight on ideal target antigens and resistance in antibody-drug conjugates: Strategies for competitive advancement. Drug Resist Updat 2024; 75:101086. [PMID: 38677200 DOI: 10.1016/j.drup.2024.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a novel and promising approach in targeted therapy, uniting the specificity of antibodies that recognize specific antigens with payloads, all connected by the stable linker. These conjugates combine the best targeted and cytotoxic therapies, offering the killing effect of precisely targeting specific antigens and the potent cell-killing power of small molecule drugs. The targeted approach minimizes the off-target toxicities associated with the payloads and broadens the therapeutic window, enhancing the efficacy and safety profile of cancer treatments. Within precision oncology, ADCs have garnered significant attention as a cutting-edge research area and have been approved to treat a range of malignant tumors. Correspondingly, the issue of resistance to ADCs has gradually come to the fore. Any dysfunction in the steps leading to the ADCs' action within tumor cells can lead to the development of resistance. A deeper understanding of resistance mechanisms may be crucial for developing novel ADCs and exploring combination therapy strategies, which could further enhance the clinical efficacy of ADCs in cancer treatment. This review outlines the brief historical development and mechanism of ADCs and discusses the impact of their key components on the activity of ADCs. Furthermore, it provides a detailed account of the application of ADCs with various target antigens in cancer therapy, the categorization of potential resistance mechanisms, and the current state of combination therapies. Looking forward, breakthroughs in overcoming technical barriers, selecting differentiated target antigens, and enhancing resistance management and combination therapy strategies will broaden the therapeutic indications for ADCs. These progresses are anticipated to advance cancer treatment and yield benefits for patients.
Collapse
Affiliation(s)
- Mingxia Jiang
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiao Li
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Binghe Xu
- Department of Medical Oncology, State Key Laboratory of Mocelular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
9
|
Kong YH, Xu ML, Zhang JJ, Chen GQ, Hong ZH, Zhang H, Dai XX, Ma YF, Zhao XR, Zhang CY, Chen RZ, Xing PF, Zhang LY. PRaG 3.0 therapy for human epidermal growth factor receptor 2-positive metastatic pancreatic ductal adenocarcinoma: A case report. World J Gastroenterol 2024; 30:1237-1249. [PMID: 38577174 PMCID: PMC10989490 DOI: 10.3748/wjg.v30.i9.1237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/06/2024] [Accepted: 02/04/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal disease with limited effective treatment especially after first-line chemotherapy. The human epidermal growth factor receptor 2 (HER-2) immunohistochemistry (IHC) positive is associated with more aggressive clinical behavior and shorter overall survival in PDAC. CASE SUMMARY We present a case of multiple metastatic PDAC with IHC mismatch repair proficient but HER-2 IHC weakly positive at diagnosis that didn't have tumor regression after first-line nab-paclitaxel plus gemcitabine and PD-1 inhibitor treatment. A novel combination therapy PRaG 3.0 of RC48 (HER2-antibody-drug conjugate), radiotherapy, PD-1 inhibitor, granulocyte-macrophage colony-stimulating factor and interleukin-2 was then applied as second-line therapy and the patient had confirmed good partial response with progress-free-survival of 6.5 months and overall survival of 14.2 month. She had not developed any grade 2 or above treatment-related adverse events at any point. Percentage of peripheral CD8+Temra and CD4+Temra were increased during first two activation cycles of PRaG 3.0 treatment containing radiotherapy but deceased to the baseline during the maintenance cycles containing no radiotherapy. CONCLUSION PRaG 3.0 might be a novel strategy for HER2-positive metastatic PDAC patients who failed from previous first-line approach and even PD-1 immunotherapy but needs more data in prospective trials.
Collapse
Affiliation(s)
- Yue-Hong Kong
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
- Institution of Radiotherapy & Oncology, Soochow University, Suzhou 215000, Jiangsu Province, China
| | - Mei-Ling Xu
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
- Institution of Radiotherapy & Oncology, Soochow University, Suzhou 215000, Jiangsu Province, China
| | - Jun-Jun Zhang
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
- Institution of Radiotherapy & Oncology, Soochow University, Suzhou 215000, Jiangsu Province, China
| | - Guang-Qiang Chen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
| | - Zhi-Hui Hong
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
| | - Hong Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
| | - Xiao-Xiao Dai
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
| | - Yi-Fu Ma
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
- Institution of Radiotherapy & Oncology, Soochow University, Suzhou 215000, Jiangsu Province, China
| | - Xiang-Rong Zhao
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
- Institution of Radiotherapy & Oncology, Soochow University, Suzhou 215000, Jiangsu Province, China
| | - Chen-Yang Zhang
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
- Institution of Radiotherapy & Oncology, Soochow University, Suzhou 215000, Jiangsu Province, China
| | - Rong-Zheng Chen
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
- Institution of Radiotherapy & Oncology, Soochow University, Suzhou 215000, Jiangsu Province, China
| | - Peng-Fei Xing
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
- Institution of Radiotherapy & Oncology, Soochow University, Suzhou 215000, Jiangsu Province, China
| | - Li-Yuan Zhang
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
- Institution of Radiotherapy & Oncology, Soochow University, Suzhou 215000, Jiangsu Province, China
| |
Collapse
|
10
|
Zhou L, Lu Y, Liu W, Wang S, Wang L, Zheng P, Zi G, Liu H, Liu W, Wei S. Drug conjugates for the treatment of lung cancer: from drug discovery to clinical practice. Exp Hematol Oncol 2024; 13:26. [PMID: 38429828 PMCID: PMC10908151 DOI: 10.1186/s40164-024-00493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
A drug conjugate consists of a cytotoxic drug bound via a linker to a targeted ligand, allowing the targeted delivery of the drug to one or more tumor sites. This approach simultaneously reduces drug toxicity and increases efficacy, with a powerful combination of efficient killing and precise targeting. Antibody‒drug conjugates (ADCs) are the best-known type of drug conjugate, combining the specificity of antibodies with the cytotoxicity of chemotherapeutic drugs to reduce adverse reactions by preferentially targeting the payload to the tumor. The structure of ADCs has also provided inspiration for the development of additional drug conjugates. In recent years, drug conjugates such as ADCs, peptide‒drug conjugates (PDCs) and radionuclide drug conjugates (RDCs) have been approved by the Food and Drug Administration (FDA). The scope and application of drug conjugates have been expanding, including combination therapy and precise drug delivery, and a variety of new conjugation technology concepts have emerged. Additionally, new conjugation technology-based drugs have been developed in industry. In addition to chemotherapy, targeted therapy and immunotherapy, drug conjugate therapy has undergone continuous development and made significant progress in treating lung cancer in recent years, offering a promising strategy for the treatment of this disease. In this review, we discuss recent advances in the use of drug conjugates for lung cancer treatment, including structure-based drug design, mechanisms of action, clinical trials, and side effects. Furthermore, challenges, potential approaches and future prospects are presented.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Liu
- Department of Geriatrics, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shanglong Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guisha Zi
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
11
|
Zhu K, Chang Y, Zhao D, Guo A, Cao J, Wu C, Guan Y, Ding S. Expression of HER2 in high-grade urothelial carcinoma based on Chinese expert consensus and the clinical effects of disitamab vedotin-tislelizumab combination therapy in the treatment of advanced patients. Front Pharmacol 2024; 15:1355081. [PMID: 38455962 PMCID: PMC10918465 DOI: 10.3389/fphar.2024.1355081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Background: A vast number of researchers have discovered high levels of human epidermal growth factor receptor-2 (HER2) expression in urothelial carcinoma (UC), but they do not use a uniform scoring system. Based on the 2021 edition of clinical pathological expert consensus on HER-2 testing in UC in China, we investigated the expression level and clinical significance of HER2 in high-grade UC. Furthermore, we looked at the prognosis of patients with locally advanced/metastatic UC after combining HER2 targeting antibody-drug conjugates (ADC) medication disitamab vedotin (DV) with programmed cell death protein 1 (PD-1) inhibitor tislelizumab. Patients and methods: From 2019 to 2022, we collected paraffin specimens of UC from the Department of Urology at the Provincial Hospital Affiliated to Shandong First Medical University. HER2 expression-related factors were investigated. Patients with advanced UC who have failed systemic chemotherapy at least once and had received immune checkpoint inhibitor (ICI) medication during second-line treatment were selected and treated with DV in combination with tislelizumab. We assessed the therapy's efficacy and safety. Results: 185 patients with high-grade UC were included in this investigation. 127 patients (68.7%) were HER2 positive (IHC 2+/3+) according to the 2021 Clinical pathological expert consensus on HER2 testing in UC in China. The clinical stage of UC differed statistically significantly between the HER2-and HER2+ groups (p = 0.019). Sixteen advanced UC patients were treated with DV and tislelizumab for a median of 14 months. The disease control rate was 87.5%, while the objective response rate (ORR) was 62.5%. The ORR of HER2+ individuals was higher than that of HER2-individuals (70.0% vs. 50.0%). The median progression-free survival or overall survival was not reached. In this study, the incidence of treatment-related adverse events was 68.8% (11/16), with all of them being grade 1 or 2 adverse reactions. Conclusion: HER2 protein expressed at a high percentage in UC, and 68.7% patients expressed HER2 positive (IHC 2+/3+). HER2+ expression is positively correlated with higher clinical stage of UC. HER2 targeted ADC drug disitamab vedotin combining with PD-1 inhibitor tislelizumab has shown efficacy, safety and controllable adverse reactions in the treatment of advanced UC.
Collapse
Affiliation(s)
- Kejia Zhu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Urology, Liaocheng People’s Hospital, Liaocheng, Shandong, China
- Engineering Laboratory of Urinary Organ and Functional Reconstruction of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yao Chang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Urology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Delong Zhao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Andong Guo
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jishuang Cao
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chenrui Wu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yong Guan
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Urology, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Sentai Ding
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Engineering Laboratory of Urinary Organ and Functional Reconstruction of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
12
|
Zhao H, Xu Z, Li C, Xu T, Zhang J, Jiao J, Yang B, Qin R, Yang L, Qin W, Jing Y. Efficacy and Safety of Disitamab Vedotin Combined with Programmed Death-1 Inhibitor for Advanced Urothelial Cancer: A Case-Series Study. Adv Ther 2024; 41:857-866. [PMID: 38048019 DOI: 10.1007/s12325-023-02729-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023]
Abstract
INTRODUCTION Antibody-drug conjugate (ADC) and programmed death-1 (PD-1) inhibitors play crucial roles in the treatment of advanced urothelial cancer (aUC). Increasingly, combination treatment modalities are used in patients with aUC intolerant to platinum-based chemotherapy (PBC). However, clinical evidence on the efficacy and safety of disitamab vedotin plus PD-1 inhibitors for aUC is limited. This case series aims to address this knowledge gap. METHODS Patients with aUC who were refractory or intolerant to PBC were included. All patients received combined treatment with disitamab vedotin (one of the ADC drugs) and PD-1 inhibitors for at least three cycles. The clinical characteristics of examination, histopathology, outcomes, and adverse events (AEs) were retrospectively collected. RESULTS Among this case series, eight patients received disitamab vedotin plus PD-1 inhibitors, of which three achieved a complete response (CR) and two had a partial response (PR). The most common AE was peripheral neuropathy (4/8); the remaining AEs were mostly of mild to moderate severity or unknown and were manageable by supportive care. CONCLUSIONS Disitamab vedotin combined with PD-1 inhibitors exhibits a favorable efficacy and safety profile, but subsequent larger cohort clinical studies are required to provide evidence-based medicine for the universal application of this regimen.
Collapse
Affiliation(s)
- Hongfan Zhao
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Zhicheng Xu
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Chengbin Li
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Tong Xu
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Jingliang Zhang
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Jianhua Jiao
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Bo Yang
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Rongliang Qin
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Lijun Yang
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Yuming Jing
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
13
|
Wang Y, Gong J, Wang A, Wei J, Peng Z, Wang X, Zhou J, Qi C, Liu D, Li J, Lu M, Lu Z, Cao Y, Yuan J, Zhang R, Fang J, Zhang X, Shen L. Disitamab vedotin (RC48) plus toripalimab for HER2-expressing advanced gastric or gastroesophageal junction and other solid tumours: a multicentre, open label, dose escalation and expansion phase 1 trial. EClinicalMedicine 2024; 68:102415. [PMID: 38235421 PMCID: PMC10789637 DOI: 10.1016/j.eclinm.2023.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024] Open
Abstract
Background Although the antibody-drug conjugates (ADCs) have significantly improved the survival outcomes of patients with human epidermal receptor 2 (HER2)-expressing gastric or gastroesophageal junction (G/GEJ) cancer, the efficacy of ADC used as a single agent is limited. Therefore, it is necessary to investigate effective and safe combination regimens. Preclinical data indicated a synergetic antitumour effect of RC48 and programmed cell death protein 1 (PD-1) inhibitors. We aimed to evaluate the safety and efficacy of RC48 plus toripalimab in patients with HER2-expressing G/GEJ cancer and other solid tumours. Methods This was a open-label, multicentre, phase 1 trial performed at three hospitals in China. Eligible patients had advanced G/GEJ cancer or other solid tumours with HER2 IHC≥1 or ISH positivity and were refractory to at least one line of treatment, or standard treatment was intolerable or unavailable for these patients. This study followed a "3 + 3" design with predefined RC48 dosages of 2.0 mg/kg and 2.5 mg/kg plus toripalimab 3 mg/kg, once every 2 weeks (q2w). The primary objectives were to evaluate the safety and determine the recommended phase II dose (RP2D), and the secondary objectives included assessing the pharmacokinetics (PK) and preliminary efficacy. This study was registered with ClinicalTrials.gov, NCT04280341. Findings Between July 13, 2020 and August 30, 2022, 56 patients, including 30 patients with G/GEJ cancer and 26 patients with other solid tumours, were enrolled and received RC48 plus toripalimab (n = 7 for RC48 2.0 mg/kg, toripalimab 3 mg/kg, q2w; n = 49 for RC48 2.5 mg/kg, toripalimab 3 mg/kg, q2w). No dose-limiting toxic effects occurred. The RP2D was declared as RC48 2.5 mg/kg plus toripalimab 3 mg/kg, q2w. The most common grade 3 adverse events were a decreased neutrophil count (n = 13), and a decreased white blood cell count (n = 7). The efficacy assessment was completed for 52 patients. Among patients with G/GEJ cancer (n = 30), the confirmed objective response rate (ORR) was 43% (12/28, 95% CI 25, 63), median progression-free survival (PFS) was 6.2 months (95% CI 4.0, 6.9), median overall survival (OS) was 16.8 months (95% CI 7.2, NE). The ORR of patients with G/GEJ cancer receiving RP2D (n = 24) reached 50% (11/22, 95% CI 28, 72), with median PFS of 5.1 months (95% CI 1.4, 7.3) and median OS of 14.0 months (95% CI 6.3, NE). Among patients with G/GEJ cancer who received RP2D, a clinical benefit was observed in both HER2-positive and low HER2 expressing populations, with an ORR of 56% (5/9, 95% CI 21, 86) vs. 46% (6/13, 95% CI 19, 75), median PFS of 7.8 months (95% CI 0.9, NE) vs. 5.1 months (95% CI 1.2, 6.9), median OS of NE months (95% CI 4.3, NE) vs. 14.0 months (95% CI 5.1, NE), respectively. Antitumour activity was also observed for other solid tumours, including breast cancer (5/13) and endometrial carcinoma (1/1). Interpretation Our findings suggested that RC48 plus toripalimab had a manageable safety profile and showed encouraging efficacy in pretreated patients with HER2-positive and low HER2-expressing G/GEJ cancer. The findings of our phase 1 clinical trial support further investigation of HER2-targeted ADC plus immunotherapy in HER2-expressing G/GEJ cancer and pancancer treatment in the future. Funding Beijing Municipal Medical Research Institutes, Beijing Medical Research Institute (Z200015).
Collapse
Affiliation(s)
- Yakun Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, HaiDian District, Beijing, China
| | - Jifang Gong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, HaiDian District, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Early Drug Development Centre, Peking University Cancer Hospital and Institute, HaiDian District, Beijing, China
| | - Airong Wang
- Department of Oncology, Weihai Municipal Hospital, Shandong, China
| | - Jia Wei
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu, China
| | - Zhi Peng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, HaiDian District, Beijing, China
| | - Xicheng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, HaiDian District, Beijing, China
| | - Jun Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, HaiDian District, Beijing, China
| | - Changsong Qi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, HaiDian District, Beijing, China
| | - Dan Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, HaiDian District, Beijing, China
| | - Jian Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, HaiDian District, Beijing, China
| | - Ming Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, HaiDian District, Beijing, China
| | - Zhihao Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, HaiDian District, Beijing, China
| | - Yanshuo Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, HaiDian District, Beijing, China
| | - Jiajia Yuan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, HaiDian District, Beijing, China
| | - Ruyan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Breast Oncology, Peking University Cancer Hospital and Institute, HaiDian District, Beijing, China
| | - Jianmin Fang
- Tongji University School of Life Sciences and Technology, Shanghai, China
| | - Xiaotian Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, HaiDian District, Beijing, China
| | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, HaiDian District, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Early Drug Development Centre, Peking University Cancer Hospital and Institute, HaiDian District, Beijing, China
| |
Collapse
|
14
|
Wei Q, Li P, Yang T, Zhu J, Sun L, Zhang Z, Wang L, Tian X, Chen J, Hu C, Xue J, Ma L, Shimura T, Fang J, Ying J, Guo P, Cheng X. The promise and challenges of combination therapies with antibody-drug conjugates in solid tumors. J Hematol Oncol 2024; 17:1. [PMID: 38178200 PMCID: PMC10768262 DOI: 10.1186/s13045-023-01509-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024] Open
Abstract
Antibody-drug conjugates (ADCs) represent an important class of cancer therapies that have revolutionized the treatment paradigm of solid tumors. To date, many ongoing studies of ADC combinations with a variety of anticancer drugs, encompassing chemotherapy, molecularly targeted agents, and immunotherapy, are being rigorously conducted in both preclinical studies and clinical trial settings. Nevertheless, combination therapy does not always guarantee a synergistic or additive effect and may entail overlapping toxicity risks. Therefore, understanding the current status and underlying mechanisms of ADC combination therapy is urgently required. This comprehensive review analyzes existing evidence concerning the additive or synergistic effect of ADCs with other classes of oncology medicines. Here, we discuss the biological mechanisms of different ADC combination therapy strategies, provide prominent examples, and assess their benefits and challenges. Finally, we discuss future opportunities for ADC combination therapy in clinical practice.
Collapse
Affiliation(s)
- Qing Wei
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
| | - Peijing Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China
| | - Teng Yang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jiayu Zhu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Sun
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ziwen Zhang
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Lu Wang
- Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuefei Tian
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
- College of Molecular Medicine, Hangzhou Institute for Advanced Study (HIAS), University of Chinese Academy of Sciences, Hangzhou, China
| | - Jiahui Chen
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Can Hu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Letao Ma
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Jianmin Fang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Jieer Ying
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China.
| | - Peng Guo
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China.
| | - Xiangdong Cheng
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China.
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, China.
| |
Collapse
|
15
|
Zhou YX, Wang JL, Mu XL, Zhu YJ, Chen Y, Liu JY. Efficacy and safety analysis of a HER2-targeting antibody-drug conjugate combined with immune checkpoint inhibitors in solid tumors: a real-world study. Aging (Albany NY) 2023; 15:15473-15488. [PMID: 38147019 PMCID: PMC10781476 DOI: 10.18632/aging.205382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Disitamab Vedotin is a novel antibody-drug conjugate (ADC) drug targeting HER2, which has shown a potential synergistic effect between Disitamab Vedotin and immune checkpoint inhibitors (ICIs). Therefore, we plan to conduct a retrospective real-world study to evaluate the efficacy and safety of Disitamab Vedotin monotherapy or combined with ICIs in the treatment of advanced or metastatic solid tumors. METHODS This retrospective study involved patients with locally advanced or metastatic solid tumors who were treated with Disitamab Vedotin monotherapy or combined with ICIs at West China Hospital of Sichuan University from July 2019 to June 2023. The observation items included progression-free survival (PFS), overall survival (OS), objective response rate (ORR), disease control rate (DCR), and treatment-related adverse events (TRAEs). RESULTS This study included 49 patients, out of which 34 patients were treated with Disitamab Vedotin plus ICIs and 15 patients received Disitamab Vedotin alone. In all patients, the median PFS was 10 months. The 6-month and 1-year OS rates were 91.1% and 82.3%, respectively. Eighteen (36.7%) patients achieved a partial response, and sixteen (32.7%) patients had stable disease. The combination therapy of Disitamab Vedotin plus ICIs showed a higher ORR (44.1% vs. 20.0%) and a longer median PFS (14 vs. 8 months) compared to Disitamab Vedotin alone. The median PFS for patients expressed with HER2 2+/3+ was 10 months and was not reached for patients expressed with HER2 0/1+. Grade 3-4 TRAEs occurred in 14.7% of patients who received the combination treatment and in 26.7% of patients who received Disitamab Vedotin alone. CONCLUSIONS Our study showed that Disitamab-Vedotin-based treatment, alone or in combination with ICIs, exerted considerable prognosis and good tolerance in patients with locally advanced or metastatic solid tumors, regardless of the HER2 expression levels. Whether combination therapy with ICIs provides greater therapeutic benefits compared to monotherapy needs to be further explored through randomized controlled trials.
Collapse
Affiliation(s)
- Yi-Xin Zhou
- Department of Biotherapy, Cancer Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Ling Wang
- Department of Biotherapy, Cancer Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Li Mu
- Department of Biotherapy, Cancer Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Ya-Juan Zhu
- Department of Biotherapy, Cancer Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Chen
- Division of Abdominal Tumor Multimodality Treatment, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ji-Yan Liu
- Department of Biotherapy, Cancer Centre, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Wang P, Xia L. RC48-ADC treatment for patients with HER2-expressing locally advanced or metastatic solid tumors: a real-world study. BMC Cancer 2023; 23:1083. [PMID: 37946161 PMCID: PMC10636982 DOI: 10.1186/s12885-023-11593-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND RC48-antibody-drug conjugates (ADC) link humanized anti-HER2 immunoglobulin with monomethyl auristatin E (MMAE). Clinical trials suggest promising antitumor activity in HER2-expressing solid tumors. This study probes RC48-ADC's efficacy and safety in patients with HER2-expressing advanced or metastatic solid tumors. METHOD Data was collected from 23 advanced cancer patients treated with RC48-ADC at our oncology center between July 2021 and December 2022. These patients exhibited at least 1 + expression of HER2 immunohistochemistry, had previously experienced at least one failed systemic chemotherapy, and were treated with RC48-ADC until the occurrence of intolerable adverse reactions or disease progression. The primary endpoint was the disease control rate (DCR), and secondary endpoints included progression-free survival (PFS), objective response rate (ORR), and safety. RESULTS 23 of 25 screened patients received RC48 treatment. The ORR was 43.5% (95% CI, 23.2-63.7%) with a median PFS of 6.0 months (95% CI, 4.8-7.4). In the low-to-medium HER2 expression subgroup, ORR was 37.5%, median PFS 5.75 months. In the high HER2 expression subgroup, ORR was 57.1%, median PFS 7 months. For the cohort combining RC48 with PD-1 inhibitors, ORR was 53.8%, median PFS 8 months. In the concurrent local radiation therapy subgroup, ORR was 40.0%, median PFS 6.0 months. Treatment-related adverse events (TRAEs) were anemia (60.8%), leukopenia (56.2%), raised transaminases (52.17%), and neutropenia (43.5%). Five patients (21.7%) experienced Grade 3 symptoms, including anemia (21.7%) and neutropenia (14.0%). No Grade 4 adverse reactions or deaths were reported. CONCLUSION RC48-ADC shows promising efficacy and manageable safety in HER2-expressing advanced or metastatic solid tumor patients.
Collapse
Affiliation(s)
- Ping Wang
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 401336, China
| | - Lei Xia
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 401336, China.
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300110, China.
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
17
|
Tan X, Wang Y, Wu Z, Zhou Q, Tang Y, Liu Z, Yuan G, Luo S, Zou Y, Guo S, Han N, Yao K. The role of Her-2 in penile squamous cell carcinoma progression and cisplatin chemoresistance and potential for antibody-drug conjugate-based therapy. Eur J Cancer 2023; 194:113360. [PMID: 37862796 DOI: 10.1016/j.ejca.2023.113360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/02/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Cisplatin-based chemotherapy has been the first choice for advanced penile squamous cell carcinoma (PSCC) in the last decade, but its utility is limited by the low response rate, systemic toxicity, and chemoresistance, which contribute to a poor prognosis. There is no standard second-line therapy for advanced PSCC. Human epidermal growth factor receptor 2 (Her-2)-targeted antibody-drug conjugates (ADCs) are novel low-toxicity agents which have greatly improved clinical outcomes for several advanced cancers. We aimed to explore the expression pattern, clinical significance, and oncogenic roles of Her-2 and the therapeutic potential of Her-2-targeted ADCs in PSCC. METHODS Her-2 immunohistochemistry was performed for the largest single-centre PSCC cohort to date (367 patients). PSCC cell lines, cisplatin-resistant cell lines, subcutaneous xenograft, and footpad metastatic models were used to investigate the biological roles of Her-2 in PSCC progression. Cytotoxicity, apoptosis assays, and western blotting investigated the mechanism of Her-2 induced cisplatin-chemoresistance. The efficacy of Disitamab Vedotin (RC48), a Her-2-targeted ADC, was evaluated in PSCC. RESULTS Her-2 was identified as an adverse prognostic indicator associated with advanced Tumor-Node-Metastasis (TNM) stages and poor survival with an immunohistochemical expression rate of approximately 47.7% (1+, 23.2%; 2+, 18.0%; 3+, 6.5%) in PSCC. Her-2 promotes cell proliferation, migration, invasion, tumour progression, and cisplatin resistance in PSCC. Mechanistically, Her-2 inhibits cisplatin-induced cell apoptosis by the activation of Akt phosphorylation at Ser473 and disrupts the balance between proapoptotic and antiapoptotic proteins. Meanwhile, cisplatin-resistant PSCC cells present aggressive oncogenic abilities and Her-2 upregulation. More importantly, RC48 displayed remarkable antitumor activities in both Her2-positive and cisplatin-resistant PSCC tumours. CONCLUSION Our study suggests that Her-2 is an available therapeutic biomarker for PSCC. Her-2-targeted ADC might have the potential to improve clinical outcomes in high-risk Her-2-positive advanced PSCC patients and provide precious second-line clinical choice for appropriate cisplatin-based chemoresistance patients.
Collapse
Affiliation(s)
- Xingliang Tan
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; State Key Laboratory of Oncology in Southern China, Guangzhou 510060, China; Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Yanjun Wang
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; State Key Laboratory of Oncology in Southern China, Guangzhou 510060, China; Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Zhiming Wu
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; State Key Laboratory of Oncology in Southern China, Guangzhou 510060, China; Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Qianghua Zhou
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; State Key Laboratory of Oncology in Southern China, Guangzhou 510060, China; Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Yi Tang
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; State Key Laboratory of Oncology in Southern China, Guangzhou 510060, China; Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Zhicheng Liu
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; State Key Laboratory of Oncology in Southern China, Guangzhou 510060, China; Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Gangjun Yuan
- Department of Urology Oncological Surgery, Chongqing University Cancer Hospital, Chongqing 400030, China; Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Sihao Luo
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; State Key Laboratory of Oncology in Southern China, Guangzhou 510060, China; Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Yuantao Zou
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; State Key Laboratory of Oncology in Southern China, Guangzhou 510060, China; Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Shengjie Guo
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; State Key Laboratory of Oncology in Southern China, Guangzhou 510060, China; Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China.
| | - Na Han
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China; Center for Health Examination and Cancer Risk Screening, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Kai Yao
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; State Key Laboratory of Oncology in Southern China, Guangzhou 510060, China; Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China.
| |
Collapse
|
18
|
Zheng Y, Xue YY, Zhao YQ, Chen Y, Li ZP. Disitamab Vedotin plus anti-PD-1 antibody show good efficacy in refractory primary urethral cancer with low HER2 expression: a case report. Front Immunol 2023; 14:1254812. [PMID: 37901233 PMCID: PMC10601644 DOI: 10.3389/fimmu.2023.1254812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Primary urethral carcinoma (PUC) has a low incidence, but with high aggressiveness. Most of the patients are found in late stage, with poor prognosis. At present, chemotherapy is still the main treatment for metastatic PUC, but it has limited effect. Here, we report a case of metastatic PUC with low HER2 expression that developed disease progression after multiline therapy including chemotherapy, programmed death-1 (PD-1) inhibitors and multi-targeted receptor tyrosine kinase (RTK) inhibitor. After receiving Disitamab Vedotin(a novel antibody drug conjugate, ADC) and toripalimab (a PD-1 inhibitor), the patient achieved persistent PR, and the PFS exceeded 12 months up to now. Our report indicates that, despite the patient of metastatic PUC has low expression of HER2, it is still possible to benefit from Disitamab Vedotin combined with PD-1 inhibitor, which may reverse the drug resistance of PD-1 inhibitor and chemotherapy to a certain extent. But larger sample studies are needed to determine the efficacy of this treatment strategy and its impact on survival.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
- Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yin-Yin Xue
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ya-Qin Zhao
- Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Abdominal Tumor Multimodality Treatment, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ye Chen
- Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Abdominal Tumor Multimodality Treatment, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhi-Ping Li
- Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Abdominal Tumor Multimodality Treatment, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Wu X, Xu L, Li X, Zhou Y, Han X, Zhang W, Wang W, Guo W, Liu W, Xu Q, Gu Y. A HER2-targeting antibody-MMAE conjugate RC48 sensitizes immunotherapy in HER2-positive colon cancer by triggering the cGAS-STING pathway. Cell Death Dis 2023; 14:550. [PMID: 37620320 PMCID: PMC10449775 DOI: 10.1038/s41419-023-06073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/06/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) is a protein that is overexpressed in some types of cancer, including breast and urothelial cancer. Here we found that HER2 was present in a portion of colon cancer patients, raising the possibility of using anti-HER2 therapy. RC48, a novel antibody-drug conjugate (ADC) comprising cytotoxic monomethyl auristatin E (MMAE) and an anti-HER2 antibody tethered via a linker, showed a comparable therapeutic effect in both HER2 low expressed (IHC2+/FISH- or IHC+) and high expressed urothelial cancer patients. In vitro studies using colon cancer cell lines showed that RC48 effectively impeded the proliferation of HER2-positive cells, indicating its potential as a treatment for HER2-positive colon cancer. Mechanism study showed that RC48 not only induces cell cycle arrest but also disrupts HER2-mediated restain of cGAS-STING signaling, potentially activating an immune response against the cancer cells. The administration of RC48 significantly reduced the growth of HER2-positive colon cancer and made HER2-positive colon cancer cells more susceptible to immunotherapy. The results of our study will contribute to determining the feasibility of RC48 as a therapeutic option for HER2-positive colon cancer.
Collapse
Affiliation(s)
- Xiaohan Wu
- Department of Oncology and Cancer Rehabilitation Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lingyan Xu
- Department of Oncology and Cancer Rehabilitation Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaofei Li
- Department of Oncology and Cancer Rehabilitation Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yirui Zhou
- Department of Oncology and Cancer Rehabilitation Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Han
- Department of Oncology and Cancer Rehabilitation Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Zhang
- Department of Oncology and Cancer Rehabilitation Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weicheng Wang
- Department of Oncology and Cancer Rehabilitation Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Engineering Research Center of Protein and Peptide Medicine, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Engineering Research Center of Protein and Peptide Medicine, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Engineering Research Center of Protein and Peptide Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yanhong Gu
- Department of Oncology and Cancer Rehabilitation Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
20
|
Wei Y, Zhang R, Yu C, Hong Z, Lin L, Li T, Chen J. Disitamab vedotin in combination with immune checkpoint inhibitors for locally and locally advanced bladder urothelial carcinoma: a two-center's real-world study. Front Pharmacol 2023; 14:1230395. [PMID: 37645442 PMCID: PMC10461006 DOI: 10.3389/fphar.2023.1230395] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
Objective: Our study aims to assess the effectiveness and safety profile of Disitamab Vedotin (DV, RC48-ADC), an innovative humanized anti-HER2 antibody conjugated with tubulin-disrupting antimitotic drug monomethyl auristatin E (MMAE) via a cleavable peptide linker. This treatment combined immune checkpoint inhibitors as part of the bladder sparing approach for selected patients suffering from locally and locally advanced bladder urothelial carcinoma. Patients and methods: We conducted a two-center, real-world study involving locally advanced urothelial carcinoma (UC) patients. Patients were classified based on HER2 expression (IHC 3+/2+/1+) or lack of HER2 expression (IHC 0). The primary endpoint was the objective response rate (ORR), assessed by the investigator following the criteria of RECIST V1.1. Secondary endpoints encompassed the pathological complete response rate (pCR), pathological partial response rate (pPR), and pathological stable disease (pSD), along with recurrence-free survival (RFS), the pathological downstaging rate, and the safety profile of the treatment. Results: In this study, nine patients were enrolled, with a median follow-up duration of 12.0 months. The overall confirmed ORR was 88.9%, Five patients achieved a complete response (CR), and three patients achieved a partial response (PR). The radiological complete response (rCR) aligned perfectly with pCR. The median radiological progression-free survival (rPFS) spanned 12.0 months (range from 8.0 to 17.0 months). One patient diagnosed with disease progression (PD) underwent a radical cystectomy. The pathological stage evolved from T2N0M0 to T3aN2M0, followed by adjuvant chemotherapy with a gemcitabine-cisplatin (GC) combination radiotherapy. At the 9-month follow-up, neither recurrence nor metastasis was observed. The rate and intensity of complications were manageable among these patients, with no evidence of grade 4 and 5 adverse events. Conclusion: The combination of DV and PD-1 demonstrated considerable activity in the objective response rate (ORR) in patients with HER2 IHC 0/1+/2+/3+ muscle-invasive bladder cancer (MIBC), along with the longest reported median radiological progression-free survival (rPFS) to date. With an extended duration of treatment, the safety profile of DV plus PD-1 was also confirmed to be manageable.
Collapse
Affiliation(s)
- Yongbao Wei
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
| | - Ruochen Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
| | - Chenbo Yu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
| | - Zhiwei Hong
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
| | - Le Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
| | - Tao Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
| | - Jianhui Chen
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
21
|
Fan S, He L, Sang D. Combination therapy with antibody‑drug conjugate RC48 (disitamab vedotin) and zimberelimab (PD‑1 inhibitor) successfully controlled recurrent HER2‑positive breast cancer resistant to trastuzumab emtansine: A case report. Oncol Lett 2023; 26:359. [PMID: 37545624 PMCID: PMC10398622 DOI: 10.3892/ol.2023.13945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/16/2023] [Indexed: 08/08/2023] Open
Abstract
Options for later-line therapy are limited for patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer who have exhibited resistance to several systemic treatments. Antibody drug conjugates (ADCs) and immune checkpoint inhibitors are novel approaches for HER2-positive breast cancer, but few reports have been published regarding the efficacy of their combinations, particularly in patients with prior ADC failure. The present report describes a case of recurrent metastatic HER2-positive breast cancer, which responded poorly to several perioperative systemic therapies, including chemotherapies, HER2-targeted antibodies, small molecule inhibitors and trastuzumab emtansine (an ADC), along with post-surgical radiotherapy. Following failure of front-line therapies for recurrent cancer located in the chest wall, combination treatment with another HER2-targeted ADC, disitamab vedotin (120 mg), and zimberelimab (240 mg), a fully humanized anti-programmed cell death protein-1 (PD-1) antibody, administered intravenously every 2 weeks, was initiated. The tumor lesions improved slightly after two cycles of treatment and shrunk markedly, and almost disappeared at the end of the sixth cycle of therapy. The patient is still in remission at present. The present findings suggest the potential efficacy of HER2-targeted ADCs combined with PD-1 inhibitors for patients with HER2-positive breast cancer, including those resistant to prior HER2-targeted ADCs.
Collapse
Affiliation(s)
- Shanmin Fan
- Department of Medical Oncology, Beijing Chaoyang District Sanhuan Cancer Hospital, Beijing 100022, P.R. China
| | - Lianxiang He
- Medical Affairs Department, Guangzhou Gloria Bioscience Co., Ltd., Beijing 100005, P.R. China
| | - Die Sang
- Department of Medical Oncology, Beijing Chaoyang District Sanhuan Cancer Hospital, Beijing 100022, P.R. China
| |
Collapse
|
22
|
Fuentes-Antrás J, Genta S, Vijenthira A, Siu LL. Antibody-drug conjugates: in search of partners of choice. Trends Cancer 2023; 9:339-354. [PMID: 36746689 DOI: 10.1016/j.trecan.2023.01.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023]
Abstract
Antibody-drug conjugates (ADCs) have become a credentialled class of anticancer drugs for both solid and hematological malignancies, with regulatory approvals mainly as single agents. Despite extensive preclinical and clinical efforts to develop rational ADC-based combinations, to date only a limited number have demonstrated survival improvements over standard of care. The most appealing partners for ADCs are those that offer additive or synergistic effects on tumor cells or their microenvironment without unacceptable overlapping toxicities. Coadministration with antiangiogenic compounds, HER2-targeting drugs, DNA-damage response agents and immune checkpoint inhibitors (ICIs) represent active forerunners. Through the identification of targets with tumor-specific expression, improved conjugation technologies, and novel linkers and payloads offering superior therapeutic indices, the next generation of ADCs brings optimism to combinatorial approaches.
Collapse
Affiliation(s)
- Jesús Fuentes-Antrás
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Sofia Genta
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Abi Vijenthira
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
23
|
Al Jarroudi O, El Bairi K, Curigliano G, Afqir S. Antibody-Drug Conjugates: A New Therapeutic Approach for Triple-Negative Breast Cancer. Cancer Treat Res 2023; 188:1-27. [PMID: 38175340 DOI: 10.1007/978-3-031-33602-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subset associated with a worse prognosis and poor response to conventional chemotherapy. Despite recent advances in drug discovery, its management is still a challenge for clinicians, illuminating the unmet need to develop novel treatment approaches. Antibody-drug conjugates (ADC) are innovative oncology drugs that combine the specificity of monoclonal antibodies and the high efficacy of anticancer payloads, to deliver cytotoxic drugs selectively to cancer cells. Various ADCs were investigated for TNBC and have provided a promise for this aggressive women's cancer including the FDA-approved sacituzumab govitecan. In this chapter, we reviewed different ADCs studied for TNBC including their mechanisms of action, efficacy, and tolerability. Moreover, we have also discussed their therapeutic potential based on combinatorial approaches with other targeted therapies in early and metastatic TNBC.
Collapse
Affiliation(s)
- Ouissam Al Jarroudi
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco.
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco.
| | - Khalid El Bairi
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
| | - Giuseppe Curigliano
- European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milan, Milan, Italy
| | - Said Afqir
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
| |
Collapse
|
24
|
Yu Y, Wang J, Liao D, Zhang D, Li X, Jia Y, Kong F. Advances in Antibody-Drug Conjugates in the Treatment of HER2-Positive Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2022; 14:417-432. [PMID: 36532256 PMCID: PMC9747846 DOI: 10.2147/bctt.s384830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/17/2022] [Indexed: 09/10/2024]
Abstract
Although targeted drugs improved the therapeutic effect of HER2-positive breast cancer, the long-term prognosis was still poor. In this regard, the research and development of antibody-drug conjugates (ADCs) came into being and made a lot of progress. ADCs had the characteristics of both chemotherapeutic agents and targeted agents by combining chemotherapeutic agents and targeted agents through a linker. It not only had a strong anti-tumor effect on HER2-positive breast cancer, but also had certain anti-tumor effects on HER2-low and even HER2-negative patients. In addition, the clinical researches of ADCs combined with immune checkpoint inhibitors (ICIs) therapy had also made a great breakthrough. This review aimed to summarize the clinical progress of ADCs, in particular the two drugs approved by the US Food and Drug Administration (FDA) for HER2-positive metastatic breast cancer as well as to summarize the current status of ADCs in combination with ICIs.
Collapse
Affiliation(s)
- Yongchao Yu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
- Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Jin Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
- Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Dongying Liao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
- Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Dou Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
- Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Xiaojiang Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
- Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| |
Collapse
|
25
|
Margetuximab and trastuzumab deruxtecan: New generation of anti-HER2 immunotherapeutic agents for breast cancer. Mol Immunol 2022; 152:45-54. [DOI: 10.1016/j.molimm.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
|
26
|
Wu Q, He L, Luo J, Jin W, Xu Y, Wang C. Long‑term remission under Disitamab Vedotin (RC48) in HR‑positive/HER2‑positive metastatic breast cancer with brain meningeal, and bone marrow involvement: A case report. Oncol Lett 2022; 24:339. [PMID: 36039062 PMCID: PMC9404700 DOI: 10.3892/ol.2022.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) with overexpression of human epidermal growth factor receptor 2 (HER2) is closely associated with an elevated risk of multiple distant metastases and unfavorable prognosis. Disitamab Vedotin (RC48) is a newly developed antibody-drug conjugate targeting HER2, which is comprised of hertuzumab coupled to monomethyl auristatin E via a cleavable linker. Pre-clinical studies indicated its strong anti-tumor activity in HER2-positive and low HER2 expression models of BC. The present study reported on the case of a 60-year-old postmenopausal female who suffered from fatigue and was diagnosed with a right-sided BC tumor. The diagnosis was stage IV (cT4N3M1) hormone receptor (HR)-positive and HER2-positive invasive ductal carcinoma with systemic metastases (brain included). The patient initially responded well to 26 cycles of the first-line anti-HER2 targeted therapy plus chemotherapy (trastuzumab+pertuzumab+nab-paclitaxel) combined with whole-brain radiotherapy. However, both extracranial and intracranial lesions achieved progressive disease (PD), which eventually occurred during 5 sequential cycles of maintenance therapy. Subsequently, 4 cycles of second-line treatment (trastuzumab + pyrotinib + capecitabin) were continued until the levels of blood tumor markers CEA, CA15-3 and CA125 were elevated, and systemic PD was able to be attained (the brain metastases were rated as stable disease). Finally, the patient received RC48 as the third-line therapy and achieved a durable and effective clinical response. To date, the patient has benefited from 12 cycles of RC48 without any severe adverse effects. The overall survival was >3 years. The present study showcased that RC48 was effective and tolerable for a patient with HR- and HER2-positive BMBC.
Collapse
Affiliation(s)
- Qifeng Wu
- School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P.R. China
| | - Lina He
- Department of Oncology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, P.R. China
| | - Jing Luo
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai 201100, P.R. China
| | - Wen Jin
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai 201100, P.R. China
| | - Yingchun Xu
- Department of Oncology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, P.R. China
| | - Chen Wang
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai 201100, P.R. China
| |
Collapse
|
27
|
Zhang L, Shen D, Yu L, Yan Y, Wasan HS, Yu J, Zhang S, Sun L. Is antibody-drug conjugate a rising star for clinical treatment of solid tumors? A systematic review and meta-analysis. Crit Rev Oncol Hematol 2022; 177:103758. [PMID: 35868498 DOI: 10.1016/j.critrevonc.2022.103758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 12/01/2022] Open
Abstract
Antibody-drug conjugates (ADCs) show significant advantages in cancer treatment due to their high selectivity and anti-tumor activity, but the efficacy and safety of the treatment of solid tumors are unknown. We searched research databases, major conference proceedings and trial registries for randomized controlled trials (RCTs). Then, we selected qualified studies and extracted dates. Studies were assessed for quality, and a meta-analysis was conducted to quantify effects of ADCs on overall survival (OS), progression-free survival (PFS), overall response rate (ORR) and adverse events (AEs). The within-study heterogeneity was evaluated by subgroup and sensitivity analysis. Eleven RCTs with 4353 participants were included. ADCs had better PFS (HR: 0.69, 95 % CI: 0.56-0.82) and OS (HR: 0.76, 95 % CI: 0.61-0.92). ADCs resulted in lower risk of febrile neutropenia in blood system. Conversely, ADC therapy had not a prepotent on ORR (RR: 1.36, 95 % CI: 0.71-2.60).
Collapse
Affiliation(s)
- Leyin Zhang
- Department of Medical Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310005, China
| | - Deyi Shen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lulin Yu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yici Yan
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Harpreet S Wasan
- Department of Cancer Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Jieru Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou 310005, China.
| | - Leitao Sun
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou 310000, China.
| |
Collapse
|
28
|
Luo N, Fu M, Zhang Y, Li X, Zhu W, Yang F, Chen Z, Mei Q, Peng X, Shen L, Zhang Y, Li Q, Hu G. Prognostic Role of M6A-Associated Immune Genes and Cluster-Related Tumor Microenvironment Analysis: A Multi-Omics Practice in Stomach Adenocarcinoma. Front Cell Dev Biol 2022; 10:935135. [PMID: 35859893 PMCID: PMC9291731 DOI: 10.3389/fcell.2022.935135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/03/2022] [Indexed: 12/24/2022] Open
Abstract
N6-methylandrostenedione (m6A) methylation plays a very important role in the development of malignant tumors. The immune system is the key point in the progression of tumors, particularly in terms of tumor treatment and drug resistance. Tumor immunotherapy has now become a hot spot and a new approach for tumor treatment. However, as far as the stomach adenocarcinoma (STAD) is concerned, the in-depth research is still a gap in the m6A-associated immune markers. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases is extremely important for our research, where we obtained gene mutation, gene expression data and relevant clinical information of STAD patients. Firstly, the samples from GEO were used as external validation groups, while the TCGA samples were divided into a training group and an internal validation group randomly. Using the way of Single factor COX-LASSO- and multi-factor Cox to construct the prognostic model. Then, all samples were subjected to cluster analysis to generate high and low expression groups of immune gene. Meanwhile, we also collected the correlation between these types and tumor microenvironment. On this basis, a web version of the dynamic nomogram APP was developed. In addition, we performed microenvironmental correlation, copy number variation and mutation analyses for model genes. The prognostic model for STAD developed here demonstrated a very strong predictive ability. The results of cluster analysis manifested that the immune gene low expression group had lower survival rate and higher degree of immune infiltration. Therefore, the immune gene low expression group was associated with lower survival rates and a higher degree of immune infiltration. Gene set enrichment analysis suggested that the potential mechanism might be related to the activation of immunosuppressive functions and multiple signaling pathways. Correspondingly, the web version of the dynamic nomogram APP produced by the DynNom package has successfully achieved rapid and accurate calculation of patient survival rates. Finally, the multi-omics analysis of model genes further enriched the research content. Interference of RAB19 was confirmed to facilitate migration of STAD cells in vitro, while its overexpression inhibited these features. The prognostic model for STAD constructed in this study is accurate and efficient based on multi-omics analysis and experimental validation. Additionally, the results of the correlation analysis between the tumor microenvironment and m6Ascore are the basics of further exploration of the pathophysiological mechanism in STAD.
Collapse
Affiliation(s)
- Na Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Fu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiling Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjun Zhu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziqi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Mei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohong Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulu Shen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yuanyuan Zhang, ; Qianxia Li, ; Guangyuan Hu,
| | - Qianxia Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yuanyuan Zhang, ; Qianxia Li, ; Guangyuan Hu,
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yuanyuan Zhang, ; Qianxia Li, ; Guangyuan Hu,
| |
Collapse
|
29
|
Evaluation of cfDNA as an early detection assay for dense tissue breast cancer. Sci Rep 2022; 12:8458. [PMID: 35589867 PMCID: PMC9120463 DOI: 10.1038/s41598-022-12457-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
A cell-free DNA (cfDNA) assay would be a promising approach to early cancer diagnosis, especially for patients with dense tissues. Consistent cfDNA signatures have been observed for many carcinogens. Recently, investigations of cfDNA as a reliable early detection bioassay have presented a powerful opportunity for detecting dense tissue screening complications early. We performed a prospective study to evaluate the potential of characterizing cfDNA as a central element in the early detection of dense tissue breast cancer (BC). Plasma samples were collected from 32 consenting subjects with dense tissue and positive mammograms, 20 with positive biopsies and 12 with negative biopsies. After screening and before biopsy, cfDNA was extracted, and whole-genome next-generation sequencing (NGS) was performed on all samples. Copy number alteration (CNA) and single nucleotide polymorphism (SNP)/insertion/deletion (Indel) analyses were performed to characterize cfDNA. In the positive-positive subjects (cases), a total of 5 CNAs overlapped with 5 previously
reported BC-related oncogenes (KSR2, MAP2K4, MSI2, CANT1 and MSI2). In addition, 1 SNP was detected in KMT2C, a BC oncogene, and 9 others were detected in or near 10 genes (SERAC1, DAGLB, MACF1, NVL, FBXW4, FANK1, KCTD4, CAVIN1; ATP6V0A1 and ZBTB20-AS1) previously associated with non-BC cancers. For the positive–negative subjects (screening), 3 CNAs were detected in BC genes (ACVR2A, CUL3 and PIK3R1), and 5 SNPs were identified in 6 non-BC cancer genes (SNIP1, TBC1D10B, PANK1, PRKCA and RUNX2; SUPT3H). This study presents evidence of the potential of using cfDNA somatic variants as dense tissue BC biomarkers from a noninvasive liquid bioassay for early cancer detection.
Collapse
|
30
|
Díaz-Rodríguez E, Gandullo-Sánchez L, Ocaña A, Pandiella A. Novel ADCs and Strategies to Overcome Resistance to Anti-HER2 ADCs. Cancers (Basel) 2021; 14:154. [PMID: 35008318 PMCID: PMC8750930 DOI: 10.3390/cancers14010154] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 12/23/2022] Open
Abstract
During recent years, a number of new compounds against HER2 have reached clinics, improving the prognosis and quality of life of HER2-positive breast cancer patients. Nonetheless, resistance to standard-of-care drugs has motivated the development of novel agents, such as new antibody-drug conjugates (ADCs). The latter are a group of drugs that benefit from the potency of cytotoxic agents whose action is specifically guided to the tumor by the target-specific antibody. Two anti-HER2 ADCs have reached the clinic: trastuzumab-emtansine and, more recently, trastuzumab-deruxtecan. In addition, several other HER2-targeted ADCs are in preclinical or clinical development, some of them with promising signs of activity. In the present review, the structure, mechanism of action, and potential resistance to all these ADCs will be described. Specific attention will be given to discussing novel strategies to circumvent resistance to ADCs.
Collapse
Affiliation(s)
- Elena Díaz-Rodríguez
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-IBSAL and CIBERONC, 37007 Salamanca, Spain; (E.D.-R.); (L.G.-S.)
- Departamento de Bioquímica y Biología Molecular, University of Salamanca, 37007 Salamanca, Spain
| | - Lucía Gandullo-Sánchez
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-IBSAL and CIBERONC, 37007 Salamanca, Spain; (E.D.-R.); (L.G.-S.)
| | - Alberto Ocaña
- Hospital Clínico San Carlos, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), 28040 Madrid, Spain;
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-IBSAL and CIBERONC, 37007 Salamanca, Spain; (E.D.-R.); (L.G.-S.)
| |
Collapse
|