1
|
Deipolyi AR, Ward RC, Riaz A, Vogl TJ, Simmons RM, Pieper CC, Bryce Y. Locoregional Therapies for Primary and Metastatic Breast Cancer: AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2024; 222:e2329454. [PMID: 37377360 DOI: 10.2214/ajr.23.29454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Minimally invasive locoregional therapies have a growing role in the multidisciplinary treatment of primary and metastatic breast cancer. Factors contributing to the expanding role of ablation for primary breast cancer include earlier diagnosis, when tumors are small, and increased longevity of patients whose condition precludes surgery. Cryoablation has emerged as the leading ablative modality for primary breast cancer owing to its wide availability, the lack of need for sedation, and the ability to monitor the ablation zone. Emerging evidence suggests that in patients with oligometastatic breast cancer, use of locoregional therapies to eradicate all disease sites may confer a survival advantage. Evidence also suggests that transarterial therapies-including chemoembolization, chemoperfusion, and radioembolization-may be helpful to some patients with advanced liver metastases from breast cancer, such as those with hepatic oligoprogression or those who cannot tolerate systemic therapy. However, the optimal modalities for treatment of oligometastatic and advanced metastatic disease remain unknown. Finally, locoregional therapies may produce tumor antigens that in combination with immunotherapy drive anti-tumor immunity. Although key trials are ongoing, additional prospective studies are needed to establish the inclusion of interventional oncology in societal breast cancer guidelines to support further clinical adoption and improved patient outcomes.
Collapse
Affiliation(s)
- Amy R Deipolyi
- Department of Surgery, Interventional Radiology, West Virginia University/Charleston Area Medical Center, 3200 MacCorkle Ave SE, Charleston, WV 25304
| | - Robert C Ward
- Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University, Providence, RI
| | - Ahsun Riaz
- Department of Radiology, Northwestern Feinberg School of Medicine, Chicago, IL
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University Frankfurt, Frankfurt, Germany
| | - Rache M Simmons
- Department of Surgery, Weill Medical College of Cornell University, New York, NY
| | - Claus C Pieper
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Yolanda Bryce
- Division of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
2
|
Maqsood Q, Sumrin A, Saleem Y, Wajid A, Mahnoor M. Exosomes in Cancer: Diagnostic and Therapeutic Applications. Clin Med Insights Oncol 2024; 18:11795549231215966. [PMID: 38249520 PMCID: PMC10799603 DOI: 10.1177/11795549231215966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/29/2023] [Indexed: 01/23/2024] Open
Abstract
Small extracellular vesicles called exosomes are produced by cells and contain a range of biomolecules, including proteins, lipids, and nucleic acids. Exosomes have been implicated in the development and spread of cancer, and recent studies have shown that their contents may be exploited as biomarkers for early detection and ongoing surveillance of the disease. In this review article, we summarize the current knowledge on exosomes as biomarkers of cancer. We discuss the various methods used for exosome isolation and characterization, as well as the different types of biomolecules found within exosomes that are relevant for cancer diagnosis and prognosis. We also highlight recent studies that have demonstrated the utility of exosomal biomarkers in different types of cancer, such as lung cancer, breast cancer, and pancreatic cancer. Overall, exosomes show great promise as noninvasive biomarkers for cancer detection and monitoring. Exosomes have the ability to transform cancer diagnostic and therapeutic paradigms, providing promise for more efficient and individualized. This review seeks to serve as an inspiration for new ideas and research in the never-ending fight against cancer. Moreover, further studies are needed to validate their clinical utility and establish standardized protocols for their isolation and analysis. With continued research and development, exosomal biomarkers have the potential to revolutionize cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Quratulain Maqsood
- Department of Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Aleena Sumrin
- Department of Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Yasar Saleem
- Department of Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex Lahore, Lahore, Pakistan
| | - Abdul Wajid
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Muhammada Mahnoor
- Department of Rehabilitation Science, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
3
|
Sardela de Miranda F, Castro M, Remmert N, Singh SP, Layeequr Rahman R, Melkus MW. Leveraging cryoablation and checkpoint inhibitors for high-risk triple negative breast cancer. Front Immunol 2023; 14:1258873. [PMID: 37860001 PMCID: PMC10582696 DOI: 10.3389/fimmu.2023.1258873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Breast cancer is the second most common cancer among women in the United States in which the standard of care treatment is surgery with adjunctive therapy. Cryoablation, which destroys the tumor using extremely cold temperatures while preserving the potential tumor antigens, is a promising alternative to surgical resection. It is less invasive, cosmetically appeasing, cost-effective, and capable of contributing to the abscopal effect - the immune response targeting potential distant metastasis. However, to maximize the immunologic benefit of cryoablation in biologically high-risk breast cancers, combination with therapies that enhance immune activation, such as immune checkpoint inhibitors (ICIs) may be necessary. This mini review describes the fundamentals of cryoablation and treatment with ICIs, as well as discuss the caveats in both strategies and current clinical trials aimed to improve this approach to benefit patients.
Collapse
Affiliation(s)
- Flávia Sardela de Miranda
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Breast Center of Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Maribel Castro
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Breast Center of Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Nicole Remmert
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Breast Center of Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Sharda P. Singh
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Breast Center of Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Rakhshanda Layeequr Rahman
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Breast Center of Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Michael W. Melkus
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Breast Center of Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
4
|
Daye D, Panagides J, Norton L, Ahmed M, Fukuma E, Ward RC, Gomez D, Kokabi N, Vogl T, Abi-Jaoudeh N, Deipolyi A. New Frontiers in the Role of Locoregional Therapies in Breast Cancer: Proceedings from the Society of Interventional Radiology Foundation Research Consensus Panel. J Vasc Interv Radiol 2023; 34:1835-1842. [PMID: 37414212 DOI: 10.1016/j.jvir.2023.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
Emerging evidence regarding the effectiveness of locoregional therapies (LRTs) for breast cancer has prompted investigation of the potential role of interventional radiology (IR) in the care continuum of patients with breast cancer. The Society of Interventional Radiology Foundation invited 7 key opinion leaders to develop research priorities to delineate the role of LRTs in both primary and metastatic breast cancer. The objectives of the research consensus panel were to identify knowledge gaps and opportunities pertaining to the treatment of primary and metastatic breast cancer, establish priorities for future breast cancer LRT clinical trials, and highlight lead technologies that will improve breast cancer outcomes either alone or in combination with other therapies. Potential research focus areas were proposed by individual panel members and ranked by all participants according to each focus area's overall impact. The results of this research consensus panel present the current priorities for the IR research community related to the treatment of breast cancer to investigate the clinical impact of minimally invasive therapies in the current breast cancer treatment paradigm.
Collapse
Affiliation(s)
- Dania Daye
- Department of Interventional Radiology, Massachusetts General Hospital, Boston, Massachusetts.
| | - John Panagides
- Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Larry Norton
- Division of Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Muneeb Ahmed
- Department of Radiology, Beth Israel Deaconness Medical Center, Boston, Massachusetts
| | - Eisuke Fukuma
- Department of Radiology, Kameda Medical Center Breast Center, Kamogawa, Chiba, Japan
| | - Robert C Ward
- Department of Radiology, Brown University Rhode Island Hospital, Providence, Rhode Island
| | - Daniel Gomez
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nima Kokabi
- Department of Radiology and Imaging Science, Emory University Hospital, Atlanta, Georgia
| | - Thomas Vogl
- Department of Radiology, Hospital of the Goethe University Frankfurt Center of Radiology, Frankfurt am Main, Germany
| | - Nadine Abi-Jaoudeh
- Division of Vascular and Interventional Radiology, Department of Radiology, University of California Irvine, Orange, California
| | - Amy Deipolyi
- Department of Radiology, Charleston Area Medical Center, Vascular Center of Excellence, Charleston, West Virginia
| |
Collapse
|
5
|
Huang ML, Tomkovich K, Lane DL, Katta R, Candelaria RP, Santiago L. Breast Cancer Cryoablation Fundamentals Past and Present: Technique Optimization and Imaging Pearls. Acad Radiol 2023; 30:2383-2395. [PMID: 37455177 DOI: 10.1016/j.acra.2023.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/08/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023]
Abstract
Surgical treatment for breast cancer has evolved from radical mastectomy to modified radical mastectomy to breast-conserving surgery. As the de-escalation of surgical treatment for breast cancer continues, nonsurgical treatment for early-stage breast cancer with favorable ancillary features (low grade, positivity for hormone receptors) is being explored. Of the nonsurgical treatment options, cryoablation has demonstrated the greatest appeal, proven to be effective, safe, well tolerated, and feasible in an outpatient setting with local anesthetic alone. Results of past and interim results of current trials of cryoablation of stage I low-grade breast cancer with curative intent are promising, with an overall clinical success rate of 98% and recurrence rates consistent with those expected following lumpectomy. Cryoablation is also an alternative palliative treatment for patients who cannot tolerate or who have disease that is refractory to or recurs after standard-of-care breast cancer treatment and may have immunological therapeutic effects, warranting future research. Understanding the indications and optimal technique for breast cancer cryoablation and understanding typical imaging findings after cryoablation are essential to ensure the success of the procedure in carefully selected patients.
Collapse
Affiliation(s)
- Monica L Huang
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 1350, Houston, Texas (M.L.H., D.L.L., R.P.C., L.S.).
| | | | - Deanna L Lane
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 1350, Houston, Texas (M.L.H., D.L.L., R.P.C., L.S.)
| | - Rajani Katta
- McGovern Medical School at UTHealth Houston, Bellaire, Texas (R.K.)
| | - Rosalind P Candelaria
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 1350, Houston, Texas (M.L.H., D.L.L., R.P.C., L.S.)
| | - Lumarie Santiago
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 1350, Houston, Texas (M.L.H., D.L.L., R.P.C., L.S.)
| |
Collapse
|
6
|
Tarekegn K, Keskinkilic M, Kristoff TJ, Evans ST, Kalinsky K. The role of immune checkpoint inhibition in triple negative breast cancer. Expert Rev Anticancer Ther 2023; 23:1095-1106. [PMID: 37771270 DOI: 10.1080/14737140.2023.2265059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/26/2023] [Indexed: 09/30/2023]
Abstract
INTRODUCTION Immunotherapy has revolutionized cancer treatment, including TNBC, which has limited options of treatment and poor prognosis. ICIs studied in TNBC include pembrolizumab, nivolumab, atezolizumab, and durvalumab. Initial studies exploring ICI monotherapy demonstrated promising yet limited responses. Subsequent studies, KEYNOTE 522 and KEYNOTE 355, which combined ICI with chemotherapy, have resulted in the FDA approval of pembrolizumab in the early-stage and metastatic setting, respectively. AREAS COVERED This article provides a comprehensive review of the role of ICI in the treatment of TNBC. We reviewed the trials that have evaluated ICI monotherapy, dual therapy, ICI in combination with chemotherapy, targeted therapy, vaccines and radiation. Additionally, we reviewed potential biomarkers of response and immune-related adverse events (irAEs). A literature search was conducted via PubMed and ClinicalTrials.gov as of 5 June 2023. EXPERT OPINION Various approaches combining immunotherapy with chemotherapy, targeted therapy, vaccines and radiation have been assessed. Pembrolizumab remains the only ICI approved in both the early stage and mTNBC. The role of adjuvant pembrolizumab in those who achieved pCR after neoadjuvant therapy is being investigated. Combining ICI with PARP inhibitors and radiation shows promise. More research is needed in identifying predictors of response. Monitoring of irAEs remains crucial.
Collapse
Affiliation(s)
- Kidist Tarekegn
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Merve Keskinkilic
- Department of Medical Oncology, Dokuz Eylül University Faculty of Medicine, Izmir, Turkey
| | | | - Sean T Evans
- Emory University School of Medicine, Atlanta, GA, USA
| | - Kevin Kalinsky
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
7
|
O'Leary KA, Bates AM, Jin WJ, Burkel BM, Sriramaneni RN, Emma SE, Nystuen EJ, Sumiec EG, Ponik SM, Morris ZS, Schuler LA. Estrogen receptor blockade and radiation therapy cooperate to enhance the response of immunologically cold ER+ breast cancer to immunotherapy. Breast Cancer Res 2023; 25:68. [PMID: 37312163 PMCID: PMC10265911 DOI: 10.1186/s13058-023-01671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Most patients with estrogen receptor positive (ER+) breast cancer do not respond to immune checkpoint inhibition (ICI); the tumor microenvironment (TME) of these cancers is generally immunosuppressive and contains few tumor-infiltrating lymphocytes. Radiation therapy (RT) can increase tumor inflammation and infiltration by lymphocytes but does not improve responses to ICIs in these patients. This may result, in part, from additional effects of RT that suppress anti-tumor immunity, including increased tumor infiltration by myeloid-derived suppressor cells and regulatory T cells. We hypothesized that anti-estrogens, which are a standard of care for ER+ breast cancer, may ameliorate these detrimental effects of RT by reducing the recruitment/ activation of suppressive immune populations in the radiated TME, increasing anti-tumor immunity and responsiveness to ICIs. METHODS To interrogate the effect of the selective estrogen receptor downregulator, fulvestrant, on the irradiated TME in the absence of confounding growth inhibition by fulvestrant on tumor cells, we used the TC11 murine model of anti-estrogen resistant ER+ breast cancer. Tumors were orthotopically transplanted into immunocompetent syngeneic mice. Once tumors were established, we initiated treatment with fulvestrant or vehicle, followed by external beam RT one week later. We examined the number and activity of tumor infiltrating immune cells using flow cytometry, microscopy, transcript levels, and cytokine profiles. We tested whether fulvestrant improved tumor response and animal survival when added to the combination of RT and ICI. RESULTS Despite resistance of TC11 tumors to anti-estrogen therapy alone, fulvestrant slowed tumor regrowth following RT, and significantly altered multiple immune populations in the irradiated TME. Fulvestrant reduced the influx of Ly6C+Ly6G+ cells, increased markers of pro-inflammatory myeloid cells and activated T cells, and augmented the ratio of CD8+: FOXP3+ T cells. In contrast to the minimal effects of ICIs when co-treated with either fulvestrant or RT alone, combinatorial treatment with fulvestrant, RT and ICIs significantly reduced tumor growth and prolonged survival. CONCLUSIONS A combination of RT and fulvestrant can overcome the immunosuppressive TME in a preclinical model of ER+ breast cancer, enhancing the anti-tumor response and increasing the response to ICIs, even when growth of tumor cells is no longer estrogen sensitive.
Collapse
Affiliation(s)
- Kathleen A O'Leary
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Amber M Bates
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Won Jong Jin
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian M Burkel
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Raghava N Sriramaneni
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarah E Emma
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Erin J Nystuen
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth G Sumiec
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary S Morris
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.
| | - Linda A Schuler
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Lee JH, An JH, Youn HY. Tumour necrosis factor stimulated gene 6 intrinsically regulates PD-L1 expressions in breast cancer cells, leading to modulation of tumour microenvironment. Vet Comp Oncol 2023; 21:255-269. [PMID: 36807440 DOI: 10.1111/vco.12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/17/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
Recent studies have shown that tumour cells express tumour necrosis factor-inducible gene 6 (TSG-6) and its protein, which is known to play a key role in regulating excessive immune responses and proliferation and growth of mesenchymal stem cells (MSCs). It has not been confirmed whether the inhibition of TSG-6 for tumour cells can suppress tumour cell growth and regulate the activation of immune cells in the tumour microenvironment (TME). TSG-6-specific small interfering RNA was transfected into canine and human breast cancer cells (CIPp, CIPm and BT-20). TSG-6-down-regulated (siTSG-6) cells showed decreased cell proliferation, migration, and invasion abilities. Decreased mRNA expressions of NF-κB, STAT3 and Sox2, confirming that TSG-6 is an upper factor governing tumour growth and metastasis. Notably, siTSG-6 cells showed significantly decreased expression levels of CD44 and PD-L1. Direct and indirect co-culture of canine peripheral blood mononuclear cells (cPBMCs) and the siTSG-6 cells showed significant activation in M1 type macrophages and cytotoxic T cells. They also showed a tendency to decrease in the expression of CTLA-4 and increase in the expression of PD-1. In conclusion, this study suggests that the down-regulation of TSG-6 in breast cancer cells could not only suppress tumour growth and metastasis, and but also regulate TME. Since modulation of immune checkpoint proteins occurs in both tumour cells and immune cells, inhibiting TSG-6 and its protein within the TME could be novel therapeutic target for anticancer treatment.
Collapse
Affiliation(s)
- Jeong-Hwa Lee
- K-BIO KIURI Center, Seoul National University, Seoul, Republic of Korea.,Laboratory of Veterinary Theriogenology, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ju-Hyun An
- Department of Veterinary Emergency and Critical Care Medicine and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon-si, Republic of Korea
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Takada M, Yoshimura M, Kotake T, Kawaguchi K, Uozumi R, Kataoka M, Kato H, Yoshibayashi H, Suwa H, Tsuji W, Yamashiro H, Suzuki E, Torii M, Yamada Y, Kataoka T, Ishiguro H, Morita S, Toi M. Phase Ib/II study of nivolumab combined with palliative radiation therapy for bone metastasis in patients with HER2-negative metastatic breast cancer. Sci Rep 2022; 12:22397. [PMID: 36575361 PMCID: PMC9794767 DOI: 10.1038/s41598-022-27048-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Radiation therapy (RT) can enhance the abscopal effect of immune checkpoint blockade. This phase I/II study investigated the efficacy and safety of nivolumab plus RT in HER2-negative metastatic breast cancer requiring palliative RT for bone metastases. Cohort A included luminal-like disease, and cohort B included both luminal-like and triple-negative disease refractory to standard systemic therapy. Patients received 8 Gy single fraction RT for bone metastasis on day 0. Nivolumab was administered on day 1 for each 14-day cycle. In cohort A, endocrine therapy was administered. The primary endpoint was the objective response rate (ORR) of the unirradiated lesions. Cohorts A and B consisted of 18 and 10 patients, respectively. The ORR was 11% (90% CI 4-29%) in cohort A and 0% in cohort B. Disease control rates were 39% (90% CI 23-58%) and 0%. Median progression-free survival was 4.1 months (95% CI 2.1-6.1 months) and 2.0 months (95% CI 1.2-3.7 months). One patient in cohort B experienced a grade 3 adverse event. Palliative RT combined with nivolumab was safe and showed modest anti-tumor activity in cohort A. Further investigations to enhance the anti-tumor effect of endocrine therapy combined with RT plus immune checkpoint blockade are warranted.Trial registration number and date of registration UMIN: UMIN000026046, February 8, 2017; ClinicalTrials.gov: NCT03430479, February 13, 2018; Date of the first registration: June 22, 2017.
Collapse
Affiliation(s)
- Masahiro Takada
- grid.258799.80000 0004 0372 2033Department of Breast Surgery, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-Ku, Kyoto, 606-8507 Japan
| | - Michio Yoshimura
- grid.258799.80000 0004 0372 2033Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Kotake
- grid.414973.cDepartment of Medical Oncology, Kansai Electric Power Hospital, Osaka, Japan
| | - Kosuke Kawaguchi
- grid.258799.80000 0004 0372 2033Department of Breast Surgery, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-Ku, Kyoto, 606-8507 Japan
| | - Ryuji Uozumi
- grid.258799.80000 0004 0372 2033Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masako Kataoka
- grid.258799.80000 0004 0372 2033Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hironori Kato
- grid.410835.bDepartment of Breast Surgery, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | | | - Hirofumi Suwa
- grid.413697.e0000 0004 0378 7558Department of Breast Surgery, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Wakako Tsuji
- grid.416499.70000 0004 0595 441XDepartment of Breast Surgery, Shiga General Hospital, Moriyama, Japan
| | - Hiroyasu Yamashiro
- grid.416952.d0000 0004 0378 4277Department of Breast Surgery, Tenri Hospital, Tenri, Japan
| | - Eiji Suzuki
- grid.410843.a0000 0004 0466 8016Department of Breast Surgery, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Masae Torii
- grid.414936.d0000 0004 0418 6412Department of Breast Surgery, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Yosuke Yamada
- grid.411217.00000 0004 0531 2775Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Tatsuki Kataoka
- grid.411790.a0000 0000 9613 6383Department of Pathology, Iwate Medical University, Yahaba, Japan
| | - Hiroshi Ishiguro
- grid.412377.40000 0004 0372 168XBreast Oncology Service, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Satoshi Morita
- grid.258799.80000 0004 0372 2033Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masakazu Toi
- grid.258799.80000 0004 0372 2033Department of Breast Surgery, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-Ku, Kyoto, 606-8507 Japan
| |
Collapse
|
10
|
Wawruszak A, Okon E, Telejko I, Czerwonka A, Luszczki J. Additive pharmacological interaction between sirtuin inhibitor cambinol and paclitaxel in MCF7 luminal and MDA-MB-231 triple-negative breast cancer cells. Pharmacol Rep 2022; 74:1011-1024. [PMID: 35900723 PMCID: PMC9585000 DOI: 10.1007/s43440-022-00393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022]
Abstract
Background Breast cancer (BC) is the most common malignancy and the leading cause of cancer-related death in women worldwide. Sirtuin inhibitors (SIRTi), belonging to the histone deacetylase inhibitors group (HDIs), are potent epigenetic drugs that have been investigated for therapeutic use in different clinical disorders, including hematological malignancies and solid tumors. Methods The influence of cambinol (CAM; SIRTi) used individually or in combination with standard chemotherapeutic paclitaxel (PAX) on viability (MTT assay), proliferation (BrdU assay), induction of apoptosis and cell cycle arrest (FACS analysis) was determined in MCF7 luminal and MDA-MB-231 triple-negative breast cancer (TNBC) cells. The types of pharmacological drug–drug interaction between CAM and PAX were determined by an exact and rigorous pharmacodynamic method—an isobolography, to determine the presence of synergism, addition or antagonism between analyzed drugs using a variety of fixed-dose ratios. Results The combination of CAM and PAX at a fixed ratio of 1:1 exerted additive interaction in the viability of MCF7 and MDA-MB-231 BC cells. Both active agents used separately reduced viability and proliferation of BC cells as well as induced apoptosis and cell cycle arrest. These effects were much more evident in MCF7 than in MDA-MB-231 BC cells. Additionally, CAM combined with PAX increased anti-cancer activity compared to PAX used alone. Conclusion CAM might be considered a potential therapeutic agent individually or in combined therapy with PAX against luminal or TNBC. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s43440-022-00393-w.
Collapse
Affiliation(s)
- Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.
| | - Estera Okon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Ilona Telejko
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Jarogniew Luszczki
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
11
|
Wu Y, Cao F, Zhou D, Chen S, Qi H, Huang T, Tan H, Shen L, Fan W. Cryoablation reshapes the immune microenvironment in the distal tumor and enhances the anti-tumor immunity. Front Immunol 2022; 13:930461. [PMID: 36119081 PMCID: PMC9470839 DOI: 10.3389/fimmu.2022.930461] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/15/2022] [Indexed: 02/05/2023] Open
Abstract
As one of the local treatments, cryoablation plays an increasingly important role in the comprehensive treatment of malignant tumors with its advantages of less trauma, high reproducibility, and minimally invasive. Activation of anti-tumor immunity, another characteristic of cryoablation, has attracted more and more attention with the extensive application of immunotherapy. Unfortunately, the mechanism by which cryoablation enhances anti-tumor immunity is still unclear. In this study, we applied a multi-omics approach to investigate the effects of local cryoablation in the distal tumor microenvironment. The results revealed that large amounts of tumor antigens were released post-cryoablation, leading to a sterile inflammatory response in distant tumors. During this period, activated lysosome-related pathways result in over-expression of SNAP23 (Synaptosome associated protein 23) and STXBP2 (Syntaxin binding protein 2), activation of immune effector cells, suppression of the release of immunosuppressive factors, and finally enhancement of anti-tumor immunity, which shows a broad prospect in combined immunotherapy.
Collapse
Affiliation(s)
- Ying Wu
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Interventional Therapy, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fei Cao
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Danyang Zhou
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shuanggang Chen
- Department of Oncology, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Han Qi
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tao Huang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongtong Tan
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lujun Shen
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Weijun Fan, ; Lujun Shen,
| | - Weijun Fan
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Weijun Fan, ; Lujun Shen,
| |
Collapse
|