1
|
Ó Murchú M, Lin X, Tutty MA, Cahill C, Miller I, Jensen L, Prina-Mello A, Lynam-Lennon N, Maher SG, Kelly H, O'Sullivan J. Enhancing cancer radiotherapy efficacy using NanOx, a novel oxygenating perfluorocarbon nanoemulsion that reverses tumour hypoxia. Cancer Lett 2024; 611:217406. [PMID: 39716484 DOI: 10.1016/j.canlet.2024.217406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Radiotherapy is used to treat over 50 % of cancer patients. It is often used in combination with surgery, chemotherapy, and immunotherapy, for cancers of the breast, lung, oesophagus, and rectum. Ionising radiation predominantly exerts its anti-cancer effect through both direct DNA damage and indirectly via water radiolysis and the production of reactive oxygen species. This DNA damage is made permanent in the presence of molecular oxygen; however, it is reversible under hypoxia. Therefore, hypoxia confers significant radiotherapy resistance and given that it is a common feature of most solid tumours it offers a unique tumour vulnerability to exploit to improve radiotherapy efficacy. Many efforts to increase radiotherapy efficacy by oxygen delivery have failed due to limited efficacy and toxicity. To address this, we have developed a biocompatible, oxygenating perfluorocarbon nanoemulsion (nPFC) with imaging capacity via microCT with the view of delivering this intratumourally. We have demonstrated that this nPFC is biocompatible using an in vitro 3D liver hepatotoxicity model and in vivo using a developmental zebrafish embryo model. We have also shown that our nPFC can load and deliver a significant amount of molecular oxygen, reverse hypoxia, and enhance cellular radiosensitivity in an established in vitro isogenic model of acquired radioresistance in oesophageal adenocarcinoma (OAC) in accordance with the oxygen enhancement effect. Overall, this study demonstrates a potential method of enhancing cancer radiotherapy efficacy by locoregional oxygen delivery to hypoxic cells with acquired radioresistance.
Collapse
Affiliation(s)
- Maitiú Ó Murchú
- Trinity St James' Cancer Institute, Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons Ireland, Ireland.
| | - Xuehua Lin
- Trinity St James' Cancer Institute, Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons Ireland, Ireland
| | - Melissa Anne Tutty
- Nanomedicine Group and Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College Dublin, Ireland; Trinity St James' Cancer Institute, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Christina Cahill
- Trinity St James' Cancer Institute, Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Ian Miller
- National Preclinical Imaging Centre, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons Ireland, Ireland
| | - Lasse Jensen
- Linkoping University, Linkoping, Sweden; Bioreperia AB, Linkoping, Sweden
| | - Adriele Prina-Mello
- Nanomedicine Group and Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College Dublin, Ireland; Trinity St James' Cancer Institute, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Niamh Lynam-Lennon
- Trinity St James' Cancer Institute, Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Stephen G Maher
- Trinity St James' Cancer Institute, Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Helena Kelly
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons Ireland, Ireland
| | - Jacintha O'Sullivan
- Trinity St James' Cancer Institute, Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| |
Collapse
|
2
|
Zhang S, Ta N, Zhang S, Li S, Zhu X, Kong L, Gong X, Guo M, Liu Y. Unraveling pancreatic ductal adenocarcinoma immune prognostic signature through a naive B cell gene set. Cancer Lett 2024; 594:216981. [PMID: 38795761 DOI: 10.1016/j.canlet.2024.216981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC), a leading cause of cancer mortality, has a complex pathogenesis involving various immune cells, including B cells and their subpopulations. Despite emerging research on the role of these cells within the tumor microenvironment (TME), the detailed molecular interactions with tumor-infiltrating immune cells (TIICs) are not fully understood. METHODS We applied CIBERSORT to quantify TIICs and naive B cells, which are prognostic for PDAC. Marker genes from scRNA-seq and modular genes from weighted gene co-expression network analysis (WGCNA) were integrated to identify naive B cell-related genes. A prognostic signature was constructed utilizing ten machine-learning algorithms, with validation in external cohorts. We further assessed the immune cell diversity, ESTIMATE scores, and immune checkpoint genes (ICGs) between patient groups stratified by risk to clarify the immune landscape in PDAC. RESULTS Our analysis identified 994 naive B cell-related genes across single-cell and bulk transcriptomes, with 247 linked to overall survival. We developed a 12-gene prognostic signature using Lasso and plsRcox algorithms, which was confirmed by 10-fold cross-validation and showed robust predictive power in training and real-world cohorts. Notably, we observed substantial differences in immune infiltration between patients with high and low risk. CONCLUSION Our study presents a robust prognostic signature that effectively maps the complex immune interactions in PDAC, emphasizing the critical function of naive B cells and suggesting new avenues for immunotherapeutic interventions. This signature has potential clinical applications in personalizing PDAC treatment, enhancing the understanding of immune dynamics, and guiding immunotherapy strategies.
Collapse
Affiliation(s)
- Shichen Zhang
- Software Engineering Institute, East China Normal University, Shanghai 200062, China
| | - Na Ta
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Shihao Zhang
- National Key Laboratory of Immunity and Inflammation & Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Senhao Li
- National Key Laboratory of Immunity and Inflammation & Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Xinyu Zhu
- National Key Laboratory of Immunity and Inflammation & Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Lingyun Kong
- National Key Laboratory of Immunity and Inflammation & Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Xueqing Gong
- Software Engineering Institute, East China Normal University, Shanghai 200062, China.
| | - Meng Guo
- National Key Laboratory of Immunity and Inflammation & Institute of Immunology, Navy Medical University, Shanghai 200433, China.
| | - Yanfang Liu
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai 200433, China; National Key Laboratory of Immunity and Inflammation & Institute of Immunology, Navy Medical University, Shanghai 200433, China.
| |
Collapse
|
3
|
Giatromanolaki A, Michos GD, Xanthopoulou E, Koukourakis MI. HLA-class-I expression loss, tumor microenvironment and breast cancer prognosis. Cell Immunol 2024; 399-400:104816. [PMID: 38507936 DOI: 10.1016/j.cellimm.2024.104816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Loss of HLA-class-I molecule expression by cancer cells is a frequent event in human tumors that may lead to immune evasion from cytotoxic T-cells. We examined the expression patterns of HLA-class-I molecules in a series of 175 patients with operable breast cancer (BCa). Extensive loss of BCa cell HLA-class-I expression was noted 76.6 % of patients (27.5 % complete loss). A significant association of HLA-preservation with high TIL-density (p = 0.001) was documented. Preservation of HLA was evident only in BCa carcinomas with low HIF1α expression and high TIL-density. Cell line experiments (MCF7 and T47D) showed that induction of HLAs in cancer cells following incubation with lymphocytes or IFNγ, was abrogated under hypoxic conditions. HLA-preservation was linked with better distant metastasis-free survival (p = 0.01), which was confirmed also in multivariate analysis (p = 0.02, HR 3.17). Studying the expression of HLA-class-I molecules in parallel with TIL-density and HIF1α expression may identify subgroups of BCa patients who would benefit from immunotherapy.
Collapse
Affiliation(s)
- Alexandra Giatromanolaki
- Department of Pathology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Georgios D Michos
- Department of Pathology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Erasmia Xanthopoulou
- Department of Radiotherapy / Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Michael I Koukourakis
- Department of Radiotherapy / Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece.
| |
Collapse
|
4
|
Kontomanolis E, Tsigalou C, Mitrakas A, Gkegka AG, Efraimidou E, Karamanidis D, Nikoletos K, Panagiotis T, Nikoletos N, Giatromanolaki A, Koukourakis MI. Cytokine Plasma Levels in Breast Cancer Patients, Before and After Surgery. J Interferon Cytokine Res 2024; 44:135-142. [PMID: 38386538 DOI: 10.1089/jir.2023.0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Studying the levels of cytokines in the plasma of patients could be valuable in guiding immunotherapy policies. We assessed the plasma levels of 4 major cytokines [interferon (IFN)-β, interleukin-2 (IL-2), tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-β)] collected from 19 patients with ductal breast cancer (BCa), before surgery (BS) and 5 days after surgery (AS). The ratio AS/BS was also calculated and correlated with histopathological variables and tumor-infiltrating lymphocyte (TIL) density. The IFN-β and TNF-α levels were significantly higher in BCa patients, BS and AS, than healthy controls (P < 0.02). High IL-2 levels BS were linked with node involvement (P = 0.02), and marginally with HER2 expression (P = 0.08), while high TNF-α levels were linked with high PgR expression (P = 0.02). Increasing IFN-β, IL-2, and TNF-α levels were noted AS, which was more evident in patients with larger tumors. The TGF-β levels were significantly lower in BCa patients (P < 0.007). Linear regression analysis showed a direct association of IFN-β levels AS (P = 0.02, r = 0.52) and of TNF-α AS/BS-ratio (P = 0.001, r = 0.72) with TIL-density. It is suggested that although effector immune response is evident in the majority of early stage BCa patients, removal of the primary tumor further unblocks such responses.
Collapse
Affiliation(s)
- Emmanuel Kontomanolis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Tsigalou
- Department of Microbiology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Achilleas Mitrakas
- Department of Radiotherapy and Oncology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Anastasia G Gkegka
- Department of Pathology, and Democritus University of Thrace, Alexandroupolis, Greece
| | - Eleni Efraimidou
- Department of Surgery, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Konstantinos Nikoletos
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Tsikouras Panagiotis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikolaos Nikoletos
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Michael I Koukourakis
- Department of Radiotherapy and Oncology, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
5
|
Said SS, Ibrahim WN. Breaking Barriers: The Promise and Challenges of Immune Checkpoint Inhibitors in Triple-Negative Breast Cancer. Biomedicines 2024; 12:369. [PMID: 38397971 PMCID: PMC10886684 DOI: 10.3390/biomedicines12020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/25/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive malignancy with pronounced immunogenicity, exhibiting rapid proliferation and immune cell infiltration into the tumor microenvironment. TNBC's heterogeneity poses challenges to immunological treatments, inducing resistance mechanisms in the tumor microenvironment. Therapeutic modalities, including immune checkpoint inhibitors (ICIs) targeting PD-1, PD-L1, and CTLA-4, are explored in preclinical and clinical trials. Promising results emerge from combining ICIs with anti-TGF-β and VISTA, hindering TNBC tumor growth. TNBC cells employ complex evasion strategies involving interactions with stromal and immune cells, suppressing immune recognition through various cytokines, chemokines, and metabolites. The recent focus on unraveling humoral and cellular components aims to disrupt cancer crosstalk within the tumor microenvironment. This review identifies TNBC's latest resistance mechanisms, exploring potential targets for clinical trials to overcome immune checkpoint resistance and enhance patient survival rates.
Collapse
Affiliation(s)
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
6
|
Koukourakis IM, Papadimitriou M, Desse D, Zygogianni A, Papadimitriou C. Anti-Tumor Immunity and Preoperative Radiovaccination: Emerging New Concepts in the Treatment of Breast Cancer. Int J Mol Sci 2023; 24:ijms24119310. [PMID: 37298262 DOI: 10.3390/ijms24119310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Neoadjuvant chemotherapy (NACT) for certain breast cancer (BC) subtypes confers significant tumor regression rates and a survival benefit for patients with a complete pathologic response. Clinical and preclinical studies have demonstrated that immune-related factors are responsible for better treatment outcomes, and thus, neoadjuvant immunotherapy (IO) has emerged as a means to further improve patient survival rates. Innate immunological "coldness", however, of specific BC subtypes, especially of the luminal ones, due to their immunosuppressive tumor microenvironment, hinders the efficacy of immune checkpoint inhibitors. Treatment policies aiming to reverse this immunological inertia are, therefore, needed. Moreover, radiotherapy (RT) has been proven to have a significant interplay with the immune system and promote anti-tumor immunity. This "radiovaccination" effect could be exploited in the neoadjuvant setting of BC and significantly enhance the effects of the already established clinical practice. Modern stereotactic irradiation techniques directed to the primary tumor and involved lymph nodes may prove important for the RT-NACT-IO combination. In this review, we provide an overview and critically discuss the biological rationale, clinical experience, and ongoing research underlying the interplay between neoadjuvant chemotherapy, anti-tumor immune response, and the emerging role of RT as a preoperative adjunct with immunological therapeutic implications in BC.
Collapse
Affiliation(s)
- Ioannis M Koukourakis
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Marios Papadimitriou
- Oncology Unit, Aretaieion University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Dimitra Desse
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Anna Zygogianni
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Christos Papadimitriou
- Oncology Unit, Aretaieion University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
7
|
Guo N, Yang A, Farooq FB, Kalaria S, Moss E, DeVorkin L, Lesperance M, Bénard F, Wilson D, Tinker AV, Nathoo FS, Hamilton PT, Lum JJ. CD8 + T cell infiltration is associated with improved survival and negatively correlates with hypoxia in clear cell ovarian cancer. Sci Rep 2023; 13:6530. [PMID: 37085560 PMCID: PMC10121667 DOI: 10.1038/s41598-023-30655-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/27/2023] [Indexed: 04/23/2023] Open
Abstract
Unlike other histological types of epithelial ovarian carcinoma, clear cell ovarian carcinoma (CCOC) has poor response to therapy. In many other carcinomas, expression of the hypoxia-related enzyme Carbonic anhydrase IX (CAIX) by cancer cells is associated with poor prognosis, while the presence of CD8 + tumor-infiltrating lymphocytes (TIL) is positively prognostic. We employed [18F]EF5-PET/CT imaging, transcriptome profiling, and spatially-resolved histological analysis to evaluate relationships between CAIX, CD8, and survival in CCOC. Tissue microarrays (TMAs) were evaluated for 218 cases in the Canadian COEUR study. Non-spatial relationships between CAIX and CD8 were investigated using Spearman rank correlation, negative binomial regression and gene set enrichment analysis. Spatial relationships at the cell level were investigated using the cross K-function. Survival analysis was used to assess the relationship of CAIX and CD8 with patient survival for 154 cases. CD8 + T cell infiltration positively predicted survival with estimated hazard ratio 0.974 (95% CI 0.950, 1000). The negative binomial regression analysis found a strong TMA effect (p-value < 0.0001). It also indicated a negative association between CD8 and CAIX overall (p-value = 0.0171) and in stroma (p-value = 0.0050) but not in tumor (p-value = 0.173). Examination of the spatial association between the locations of CD8 + T cells and CAIX cells found a significant amount of heterogeneity in the first TMA, while in the second TMA there was a clear signal indicating negative spatial association in stromal regions. These results suggest that hypoxia may contribute to immune exclusion, primarily mediated by effects in stroma.
Collapse
Affiliation(s)
- Nancy Guo
- Department of Mathematics and Statistics, University of Victoria, STN CSC, PO BOX 1700, Victoria, BC, V8W 2Y2, Canada
| | - Aijun Yang
- Department of Mathematics and Statistics, University of Victoria, STN CSC, PO BOX 1700, Victoria, BC, V8W 2Y2, Canada
| | | | - Shreena Kalaria
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, 2410 Lee Avenue, 3rd Floor, Victoria, BC, V8R 6V5, Canada
| | - Elena Moss
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, 2410 Lee Avenue, 3rd Floor, Victoria, BC, V8R 6V5, Canada
| | - Lindsay DeVorkin
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, 2410 Lee Avenue, 3rd Floor, Victoria, BC, V8R 6V5, Canada
| | - Mary Lesperance
- Department of Mathematics and Statistics, University of Victoria, STN CSC, PO BOX 1700, Victoria, BC, V8W 2Y2, Canada
| | - François Bénard
- Department of Radiology, University of British Columbia, Vancouver, Canada
| | - Don Wilson
- Functional Imaging, BC Cancer Vancouver, Vancouver, Canada
| | - Anna V Tinker
- Medical Oncology, BC Cancer Vancouver, Vancouver, Canada
| | - Farouk S Nathoo
- Department of Mathematics and Statistics, University of Victoria, STN CSC, PO BOX 1700, Victoria, BC, V8W 2Y2, Canada.
| | - Phineas T Hamilton
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, 2410 Lee Avenue, 3rd Floor, Victoria, BC, V8R 6V5, Canada.
| | - Julian J Lum
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, 2410 Lee Avenue, 3rd Floor, Victoria, BC, V8R 6V5, Canada.
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada.
| |
Collapse
|
8
|
Rao Malla R, Bhamidipati P, Adem M. Insights into the potential of Sanguinarine as a promising therapeutic option for breast cancer. Biochem Pharmacol 2023; 212:115565. [PMID: 37086811 DOI: 10.1016/j.bcp.2023.115565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023]
Abstract
Breast cancer (BC) is one of the leading causes of cancer-related deaths in women worldwide. The tumor microenvironment (TME) plays a crucial role in the progression and metastasis of BC. A significant proportion of BC is characterized by a hypoxic TME, which contributes to the development of drug resistance and cancer recurrence. Sanguinarine (SAN), an isoquinoline alkaloid found in Papaver plants, has shown promise as an anticancer agent. The present review focuses on exploring the molecular mechanisms of hypoxic TME in BC and the potential of SAN as a therapeutic option. The review presents the current understanding of the hypoxic TME, its signaling pathways, and its impact on the progression of BC. Additionally, the review elaborates on the mechanisms of action of SAN in BC, including its effects on vital cellular processes such as proliferation, migration, drug resistance, and tumor-induced immune suppression. The review highlights the importance of addressing hypoxic TME in treating BC and the potential of SAN as a promising therapeutic option.
Collapse
Affiliation(s)
- Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Priyamvada Bhamidipati
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Meghapriya Adem
- Department of Biotechnology, Sri Padmavathi Mahila Visva vidhyalayam, Tirupati-517502, Andhra Pradesh, India
| |
Collapse
|
9
|
Xanthopoulou ET, Kakouratos C, Nanos C, Gkegka AG, Kalaitzis C, Giatromanolaki A, Koukourakis MI. HIF1α-dependent and independent pathways regulate the expression of PD-L1 in prostate cancer. Med Oncol 2023; 40:151. [PMID: 37067635 PMCID: PMC10110727 DOI: 10.1007/s12032-023-02017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023]
Abstract
PD-L1/PD-1 pathway is a major pathway exploited by human cancer types, which is a target for current immunotherapy. We investigated tumor microenvironmental factors involved in PD-L1 induction in prostate cancer (PC). We studied the expression of PD-L1 in a series of 66 PCs, in parallel with the expression of hypoxia- and acidity-related immunohistochemical markers (Hypoxia-inducible factor HIF1α, and lactate dehydrogenase LDHA) and tumor-infiltrating lymphocyte TIL density. Experiments with three PC cell lines, the 22Rv1, DU145, and PC3 were conducted focusing on the inducibility of PD-L1 by hypoxia, acidity, lymphocyte interactions, and radiation. In tissues, PD-L1 expression by cancer cells was directly related to PD-L1 expression by TILs and macrophages (p < 0.05), and the overexpression of HIF1α and LDH5 (p < 0.05). TIL density was inversely related to ΗΙF1α (p = 0.02). Exposure of PC cell lines to hypoxia strongly induced PD-L1 and protein and mRNA levels, directly controlled by HIF1α function (p < 0.001). Irradiation with 20 Gy had no apparent effect on PD-L1 expression. Culturing PC cell lines with culture medium (CM) from PBMCs strongly induced PD-L1 at protein and mRNA levels, independently from HIF1α, which was also confirmed when cells were incubated with Interferon-γ (p < 0.001). It is concluded that the combination of anti-PD-L1/PD-1 immunotherapy with hypoxia/HIF-targeting may be important in the treatment of specific subgroups of PC patients.
Collapse
Affiliation(s)
- Erasmia T Xanthopoulou
- Department of Radiotherapy/Oncology, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Christos Kakouratos
- Department of Radiotherapy/Oncology, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Christos Nanos
- Department of Radiotherapy/Oncology, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Anastasia G Gkegka
- Department of Pathology, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Christos Kalaitzis
- Department of Urology, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | | | - Michael I Koukourakis
- Department of Radiotherapy/Oncology, Democritus University of Thrace, 68100, Alexandroupolis, Greece.
| |
Collapse
|
10
|
Zhang J, Su Q, Li SC. Qigong Exercise Balances Oxygen Supply and Acid-Base to Modulate Hypoxia: A Perspective Platform toward Preemptive Health & Medicine. Med Sci (Basel) 2023; 11:medsci11010021. [PMID: 36976529 PMCID: PMC10057714 DOI: 10.3390/medsci11010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/14/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Qigong is a meditative movement with therapeutic effects and is commonly practiced in Eastern medicine. A growing body of evidence validates its health benefits, leading to mechanistic questions about how it works. We propose a novel mechanism by which the “acid” caused by hypoxia affects metabolism, and the way it is neutralized through Qigong practice involves the body’s blood flow and vasculature modifications. Specifically, Qigong exercise generates an oxygen supply and acid-base balance against the hypoxic effects of underlying pathological conditions. We also propose that Qigong exercise mediated and focused on the local hypoxia environment of tissues might normalize the circulation of metabolic and inflammation accumulation in the tumor tissue and restore the normal metabolism of tissues and cells through calm, relaxation, and extreme Zen-style breathing that gravitates toward preemptive health and medicine. Thus, we propose the mechanisms of action related to Qigong, intending to unify Eastern and Western exercise theory.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Physical Training and Physical Therapy, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Qingning Su
- Center of Bioengineering, School of Medicine, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory (NSCL), CHOC Children’s Research Institute (CCRI), Children’s Hospital of Orange County (CHOC), 1201 W. La Veta Ave., Orange, CA 92868-3874, USA
- Department of Neurology, School of Medicine, University of California-Irvine (UCI), 200 S Manchester Ave Ste 206, Orange, CA 92868, USA
- Correspondence: ; Tel.: +1-714-509-4964; Fax: +1-714-509-4318
| |
Collapse
|
11
|
Tumor Microenvironment and Immune Response in Lip Cancer. Cancers (Basel) 2023; 15:cancers15051478. [PMID: 36900270 PMCID: PMC10001350 DOI: 10.3390/cancers15051478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) play a significant role in cancer progression and prognosis of patients. The tumor microenvironment (TME) may affect the anti-tumor immune response. We examined the TIL and tertiary lymphoid structure (TLS) density in the invading front and inner tumor stroma, and the lymphocyte subpopulation (CD8, CD4, FOXP3) density in 60 squamous cell carcinomas of the lip. Analysis was performed in parallel with markers of hypoxia (hypoxia-inducible factor (HIF1α), lactate dehydrogenase (LDHA)) and angiogenesis. Low TIL density in the invading tumor front was related with larger tumor size (p = 0.05), deep invasion (p = 0.01), high smooth-muscle actin (SMA) expression (p = 0.01), and high HIF1α and LDH5 expression (p = 0.04). FOXP3+ TILs infiltration and FOXP3+/CD8+ ratios were higher in inner tumor areas, linked with LDH5 expression, and higher MIB1 proliferation index (p = 0.03) and SMA expression (p = 0.001). Dense CD4+ lymphocytic infiltration in the invading front is related to high tumor-budding (TB) (p = 0.04) and angiogenesis (p = 0.04 and p = 0.006, respectively). Low CD8+ TIL density, high CD20+ B-cell density, high FOXP3+/CD8+ ratio and high CD68+ macrophage presence characterized tumors with local invasion (p = 0.02, 0.01, 0.02 and 0.006, respectively). High angiogenic activity was linked with high CD4+, FOXP3+, and low CD8+ TIL density (p = 0.05, 0.01 and 0.01, respectively), as well as high CD68+ macrophage presence (p = 0.003). LDH5 expression was linked with high CD4+ and FOXP3+ TIL density (p = 0.05 and 0.01, respectively). Further research is needed to explore the prognostic and therapeutic value of TME/TIL interactions.
Collapse
|
12
|
The Combination of Immune Checkpoint Blockade with Tumor Vessel Normalization as a Promising Therapeutic Strategy for Breast Cancer: An Overview of Preclinical and Clinical Studies. Int J Mol Sci 2023; 24:ijms24043226. [PMID: 36834641 PMCID: PMC9964596 DOI: 10.3390/ijms24043226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have a modest clinical activity when administered as monotherapy against breast cancer (BC), the most common malignancy in women. Novel combinatorial strategies are currently being investigated to overcome resistance to ICIs and promote antitumor immune responses in a greater proportion of BC patients. Recent studies have shown that the BC abnormal vasculature is associated with immune suppression in patients, and hampers both drug delivery and immune effector cell trafficking to tumor nests. Thus, strategies directed at normalizing (i.e., at remodeling and stabilizing) the immature, abnormal tumor vessels are receiving much attention. In particular, the combination of ICIs with tumor vessel normalizing agents is thought to hold great promise for the treatment of BC patients. Indeed, a compelling body of evidence indicates that the addition of low doses of antiangiogenic drugs to ICIs substantially improves antitumor immunity. In this review, we outline the impact that the reciprocal interactions occurring between tumor angiogenesis and immune cells have on the immune evasion and clinical progression of BC. In addition, we overview preclinical and clinical studies that are presently evaluating the therapeutic effectiveness of combining ICIs with antiangiogenic drugs in BC patients.
Collapse
|
13
|
Gkegka AG, Koukourakis MI, Katotomichelakis M, Giatromanolaki A. Cancer Microenvironment Defines Tumor-Infiltrating Lymphocyte Density and Tertiary Lymphoid Structure Formation in Laryngeal Cancer. Head Neck Pathol 2022:10.1007/s12105-022-01517-7. [PMID: 36586079 DOI: 10.1007/s12105-022-01517-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/26/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND The presence and activity of tumor-infiltrating lymphocytes (TILs) is a key parameter related to the antitumor immune response. A large number of studies reveal TIL density as a prognostic marker and predictor of response to radiotherapy, chemotherapy, and immunotherapy. METHODS We examined the TIL and tertiary lymphoid structure TLS density in the invading front and inner tumor stroma, in a 33 squamous cell laryngeal carcinomas (LSCC) treated with laryngectomy. TIL and TLS densities were in parallel examined with markers of anaerobic metabolism, vascular density (VD), vascular survival ability (VSA), and histopathological parameters. RESULTS TIL and TLS densities significantly decreased in inner tumor areas (p < 0.0001). TIL density in the invading tumor front was inversely related with lymph node involvement (p = 0.03), HIF1α expression (p = 0.008), vessel density (p = 0.02), and MIB1 (p = 0.006). TIL density in inner stroma was inversely linked to local invasion (marginal p = 0.05), tumor budding (TB) (p = 0.005), MIB1 (p = 0.02), and HIF1α expression (p = 0.02). Low-TLS density in the invading front and in inner tumor areas was related to high TB (p = 0.02 and 0.002, respectively), HIF1α (p = 0.003 and 0.01, respectively), and LDH5 expression (p = 0.003 and 0.007, respectively). CD4+, FOXP3+ TIL density, and FOXP3+/CD8+ ratio were directly associated with VSA (p = 0.008, 0.02, and 0.05, respectively). CONCLUSION Poor immune response is related to hypoxic background and anaerobic metabolism, as well as increased invasive and metastatic ability. Regulatory TIL markers are linked with increased angiogenic potential. The prognostic, predictive, and therapy-guiding value of TILs in clinical practice demands thorough investigation.
Collapse
Affiliation(s)
- Anastasia G Gkegka
- Department of Pathology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Michael I Koukourakis
- Department of Radiotherapy / Oncology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Michael Katotomichelakis
- Otolaryngology - Head and Neck Surgery, Democritus University of Thrace-General, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Alexandra Giatromanolaki
- Department of Pathology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece.
| |
Collapse
|
14
|
Mbugua SN. Targeting Tumor Microenvironment by Metal Peroxide Nanoparticles in Cancer Therapy. Bioinorg Chem Appl 2022; 2022:5041399. [PMID: 36568636 PMCID: PMC9788889 DOI: 10.1155/2022/5041399] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Solid tumors have a unique tumor microenvironment (TME), which includes hypoxia, low acidity, and high hydrogen peroxide and glutathione (GSH) levels, among others. These unique factors, which offer favourable microenvironments and nourishment for tumor development and spread, also serve as a gateway for specific and successful cancer therapies. A good example is metal peroxide structures which have been synthesized and utilized to enhance oxygen supply and they have shown great promise in the alleviation of hypoxia. In a hypoxic environment, certain oxygen-dependent treatments such as photodynamic therapy and radiotherapy fail to respond and therefore modulating the hypoxic tumor microenvironment has been found to enhance the antitumor impact of certain drugs. Under acidic environments, the hydrogen peroxide produced by the reaction of metal peroxides with water not only induces oxidative stress but also produces additional oxygen. This is achieved since hydrogen peroxide acts as a reactive substrate for molecules such as catalyse enzymes, alleviating tumor hypoxia observed in the tumor microenvironment. Metal ions released in the process can also offer distinct bioactivity in their own right. Metal peroxides used in anticancer therapy are a rapidly evolving field, and there is good evidence that they are a good option for regulating the tumor microenvironment in cancer therapy. In this regard, the synthesis and mechanisms behind the successful application of metal peroxides to specifically target the tumor microenvironment are highlighted in this review. Various characteristics of TME such as angiogenesis, inflammation, hypoxia, acidity levels, and metal ion homeostasis are addressed in this regard, together with certain forms of synergistic combination treatments.
Collapse
Affiliation(s)
- Simon Ngigi Mbugua
- Department of Chemistry, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| |
Collapse
|
15
|
Liu Q, Guan C, Liu C, Li H, Wu J, Sun C. Targeting hypoxia-inducible factor-1alpha: A new strategy for triple-negative breast cancer therapy. Biomed Pharmacother 2022; 156:113861. [DOI: 10.1016/j.biopha.2022.113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/02/2022] Open
|
16
|
Reimche I, Yu H, Ariantari NP, Liu Z, Merkens K, Rotfuß S, Peter K, Jungwirth U, Bauer N, Kiefer F, Neudörfl JM, Schmalz HG, Proksch P, Teusch N. Phenanthroindolizidine Alkaloids Isolated from Tylophora ovata as Potent Inhibitors of Inflammation, Spheroid Growth, and Invasion of Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms231810319. [PMID: 36142230 PMCID: PMC9499467 DOI: 10.3390/ijms231810319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC), representing the most aggressive form of breast cancer with currently no targeted therapy available, is characterized by an inflammatory and hypoxic tumor microenvironment. To date, a broad spectrum of anti-tumor activities has been reported for phenanthroindolizidine alkaloids (PAs), however, their mode of action in TNBC remains elusive. Thus, we investigated six naturally occurring PAs extracted from the plant Tylophora ovata: O-methyltylophorinidine (1) and its five derivatives tylophorinidine (2), tylophoridicine E (3), 2-demethoxytylophorine (4), tylophoridicine D (5), and anhydrodehydrotylophorinidine (6). In comparison to natural (1) and for more-in depth studies, we also utilized a sample of synthetic O-methyltylophorinidine (1s). Our results indicate a remarkably effective blockade of nuclear factor kappa B (NFκB) within 2 h for compounds (1) and (1s) (IC50 = 17.1 ± 2.0 nM and 3.3 ± 0.2 nM) that is different from its effect on cell viability within 24 h (IC50 = 13.6 ± 0.4 nM and 4.2 ± 1 nM). Furthermore, NFκB inhibition data for the additional five analogues indicate a structure–activity relationship (SAR). Mechanistically, NFκB is significantly blocked through the stabilization of its inhibitor protein kappa B alpha (IκBα) under normoxic as well as hypoxic conditions. To better mimic the TNBC microenvironment in vitro, we established a 3D co-culture by combining the human TNBC cell line MDA-MB-231 with primary murine cancer-associated fibroblasts (CAF) and type I collagen. Compound (1) demonstrates superiority against the therapeutic gold standard paclitaxel by diminishing spheroid growth by 40% at 100 nM. The anti-proliferative effect of (1s) is distinct from paclitaxel in that it arrests the cell cycle at the G0/G1 state, thereby mediating a time-dependent delay in cell cycle progression. Furthermore, (1s) inhibited invasion of TNBC monoculture spheroids into a matrigel®-based environment at 10 nM. In conclusion, PAs serve as promising agents with presumably multiple target sites to combat inflammatory and hypoxia-driven cancer, such as TNBC, with a different mode of action than the currently applied chemotherapeutic drugs.
Collapse
Affiliation(s)
- Irene Reimche
- Department of Biomedical Sciences, Institute of Health Research and Education, University of Osnabrück, 49090 Osnabrück, Germany
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Haiqian Yu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Ni Putu Ariantari
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Udayana University, Bali 80361, Indonesia
| | - Zhen Liu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Kay Merkens
- Department of Chemistry, University of Cologne, 50923 Cologne, Germany
| | - Stella Rotfuß
- Department of Biomedical Sciences, Institute of Health Research and Education, University of Osnabrück, 49090 Osnabrück, Germany
| | - Karin Peter
- Department of Biomedical Sciences, Institute of Health Research and Education, University of Osnabrück, 49090 Osnabrück, Germany
| | - Ute Jungwirth
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Nadine Bauer
- European Institute of Molecular Imaging, University of Münster, 48149 Münster, Germany
| | - Friedemann Kiefer
- European Institute of Molecular Imaging, University of Münster, 48149 Münster, Germany
- Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | | | | | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Nicole Teusch
- Department of Biomedical Sciences, Institute of Health Research and Education, University of Osnabrück, 49090 Osnabrück, Germany
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
- Correspondence: ; Tel.: +49-211-81-14163
| |
Collapse
|
17
|
Prognostic and Predictive Relevance of Tumor-Infiltrating Lymphocytes in Squamous Cell Head-Neck Cancer Patients Treated with Radical Radiotherapy/Chemo-Radiotherapy. Curr Oncol 2022; 29:4274-4284. [PMID: 35735451 PMCID: PMC9222114 DOI: 10.3390/curroncol29060342] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 01/10/2023] Open
Abstract
Microenvironmental conditions control the entrance and thriving of cytotoxic lymphocytes in tumors, allowing or preventing immune-mediated cancer cell death. We investigated the role of tumor-infiltrating lymphocyte (TIL) density in the outcome of radiotherapy in a series of squamous cell head−neck tumors (HNSCC). Moreover, we assessed the link between markers of hypoxia and TIL density. One-hundred twenty-one patients with HNSCC treated prospectively with radical radiotherapy/chemo-radiotherapy were analyzed. The assessment of TIL density was performed on hematoxylin and eosin biopsy sections before radiotherapy. TIL density ranged from 0.8 to 150 lymphocytes per ×40 optical field (median 27.5). Using the median value, patients were grouped into two categories of low and high TIL density. Early T-stage tumors had a significantly higher TIL density (p < 0.003), but we found no association with N-stage. Overexpression of HIF1α, HIF2α, and CA9 was significantly linked with poor infiltration by TILs (p < 0.03). A significant association of high TIL density with better disease-specific overall survival and improved locoregional relapse-free survival was noted (p = 0.008 and 0.02, respectively), which was also confirmed in multivariate analysis. It is concluded that HNSCC phenotypes that allow for the intratumoral accumulation of lymphocytes have a better outcome following radical radiotherapy/chemo-radiotherapy. Intratumoral-activated HIF- and CA9-related pathways characterize immunologically cold tumors and may be used as targets for therapeutic interventions.
Collapse
|