1
|
Gard CC, Tice JA, Miglioretti DL, Sprague BL, Bissell MC, Henderson LM, Kerlikowske K. Extending the Breast Cancer Surveillance Consortium Model of Invasive Breast Cancer. J Clin Oncol 2024; 42:779-789. [PMID: 37976443 PMCID: PMC10906584 DOI: 10.1200/jco.22.02470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 08/08/2023] [Accepted: 09/18/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE We extended the Breast Cancer Surveillance Consortium (BCSC) version 2 (v2) model of invasive breast cancer risk to include BMI, extended family history of breast cancer, and age at first live birth (version 3 [v3]) to better inform appropriate breast cancer prevention therapies and risk-based screening. METHODS We used Cox proportional hazards regression to estimate the age- and race- and ethnicity-specific relative hazards for family history of breast cancer, breast density, history of benign breast biopsy, BMI, and age at first live birth for invasive breast cancer in the BCSC cohort. We evaluated calibration using the ratio of expected-to-observed (E/O) invasive breast cancers in the cohort and discrimination using the area under the receiver operating characteristic curve (AUROC). RESULTS We analyzed data from 1,455,493 women age 35-79 years without a history of breast cancer. During a mean follow-up of 7.3 years, 30,266 women were diagnosed with invasive breast cancer. The BCSC v3 model had an E/O of 1.03 (95% CI, 1.01 to 1.04) and an AUROC of 0.646 for 5-year risk. Compared with the v2 model, discrimination of the v3 model improved most in Asian, White, and Black women. Among women with a BMI of 30.0-34.9 kg/m2, the true-positive rate in women with an estimated 5-year risk of 3% or higher increased from 10.0% (v2) to 19.8% (v3) and the improvement was greater among women with a BMI of ≥35 kg/m2 (7.6%-19.8%). CONCLUSION The BCSC v3 model updates an already well-calibrated and validated breast cancer risk assessment tool to include additional important risk factors. The inclusion of BMI was associated with the largest improvement in estimated risk for individual women.
Collapse
Affiliation(s)
- Charlotte C. Gard
- Department of Economics, Applied Statistics, and International Business, New Mexico State University, Las Cruces, NM
| | - Jeffrey A. Tice
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Diana L. Miglioretti
- University of California, Davis, Davis, CA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA
| | - Brian L. Sprague
- Department of Surgery, University of Vermont Cancer Center, Burlington, VT
- Department of Radiology, University of Vermont Cancer Center, Burlington, VT
| | | | | | - Karla Kerlikowske
- General Internal Medicine Section, Department of Veteran Affairs, University of California, San Francisco, San Francisco, CA
- Departments of Medicine and Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
2
|
Wang H, MacInnis RJ, Li S. Family history and breast cancer risk for Asian women: a systematic review and meta-analysis. BMC Med 2023; 21:239. [PMID: 37400822 DOI: 10.1186/s12916-023-02950-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Studies of women of European ancestry have shown that the average familial relative risk for first-degree relatives of women with breast cancer is approximately twofold, but little is known for Asian women. We aimed to provide evidence for the association between family history and breast cancer risk for Asian women by systematically reviewing published literature. METHODS Studies reporting the familial relative risk of breast cancer for Asian women were searched in three online databases and complemented by a manual search. Odds ratios (ORs) for the association between family history and breast cancer risk were pooled across all included studies and by subgroups in terms of the type of family history, age, menopausal status and geographical region. RESULTS The pooled OR for women who have a first-degree relative with breast cancer was 2.46 (95% confidence interval [CI]: 2.03, 2.97). There was no evidence that the familial risk differed by the type of affected relative (mother versus sisters), the woman's age (< 50 years versus ≥ 50 years), menopausal status (pre versus post) and geographical region (East and Southeast Asia versus other regions) (all P > 0.3). The pooled ORs for women of Asian ancestry with a family history in any relative were similar for those living in non-Asian countries (2.26, 95% CI: 1.42, 3.59) compared with those living in Asian countries (2.18, 95% CI: 1.85, 2.58). CONCLUSIONS Family history of breast cancer is associated with an approximately twofold relative risk of breast cancer for Asian women, which is of similar magnitude to that observed for women of European ancestry. This implies that similar familial factors are implicated in breast cancer risk between women of European and Asian ancestries. Genetic factors are likely to play a substantial role in explaining the breast cancer familial risk for Asian women, as similar risks were observed across different living environments and cultures.
Collapse
Affiliation(s)
- Heran Wang
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Carlton, VIC, 3053, Australia
- China Astronaut Research and Training Centre, Beijing, 100094, China
| | - Robert J MacInnis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Carlton, VIC, 3053, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia
| | - Shuai Li
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Carlton, VIC, 3053, Australia.
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK.
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, 3051, Australia.
| |
Collapse
|
3
|
Kumerow MT, Rodriguez JL, Dai S, Kolor K, Rotunno M, Peipins LA. Prevalence of Americans reporting a family history of cancer indicative of increased cancer risk: Estimates from the 2015 National Health Interview Survey. Prev Med 2022; 159:107062. [PMID: 35460723 PMCID: PMC9162122 DOI: 10.1016/j.ypmed.2022.107062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022]
Abstract
The collection and evaluation of family health history in a clinical setting presents an opportunity to discuss cancer risk, tailor cancer screening recommendations, and identify people with an increased risk of carrying a pathogenic variant who may benefit from referral to genetic counseling and testing. National recommendations for breast and colorectal cancer screening indicate that men and women who have a first-degree relative affected with these types of cancers may benefit from talking to a healthcare provider about starting screening at an earlier age and other options for cancer prevention. The prevalence of reporting a first-degree relative who had cancer was assessed among adult respondents of the 2015 National Health Interview Survey who had never had cancer themselves (n = 27,999). We found 35.6% of adults reported having at least one first-degree relative with cancer at any site. Significant differences in reporting a family history of cancer were observed by sex, age, race/ethnicity, educational attainment, and census region. Nearly 5% of women under age 50 and 2.5% of adults under age 50 had at least one first-degree relative with breast cancer or colorectal cancer, respectively. We estimated that 5.8% of women had a family history of breast or ovarian cancer that may indicate increased genetic risk. A third of U.S. adults who have never had cancer report a family history of cancer in a first-degree relative. This finding underscores the importance of using family history to inform discussions about cancer risk and screening options between healthcare providers and their patients.
Collapse
Affiliation(s)
- Marie T Kumerow
- Tanaq Support Services, LLC, 3201 C St Site 602, Anchorage, AK 99503, USA.
| | - Juan L Rodriguez
- Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, 4770 Buford Highway NE, MS S107-4, Atlanta, GA 30341, USA.
| | - Shifan Dai
- Cyberdata Technologies, Inc., 455 Springpark Pl # 300, Herndon, VA 20701, USA.
| | - Katherine Kolor
- Office of Genomics and Precision Public Health, Centers for Disease Control and Prevention, 2500 Century Parkway NE, MS V25-5, Atlanta, GA 30345, USA.
| | - Melissa Rotunno
- Division of Cancer Control and Population Sciences, National Cancer Institute, 9609 Medical Center Dr RM 4E548, Bethesda, MD 20892, USA.
| | - Lucy A Peipins
- Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, 4770 Buford Highway NE, MS S107-4, Atlanta, GA 30341, USA.
| |
Collapse
|
4
|
BREAst screening Tailored for HEr (BREATHE)-A study protocol on personalised risk-based breast cancer screening programme. PLoS One 2022; 17:e0265965. [PMID: 35358246 PMCID: PMC8970365 DOI: 10.1371/journal.pone.0265965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/22/2022] [Indexed: 12/29/2022] Open
Abstract
Routine mammography screening is currently the standard tool for finding cancers at an early stage, when treatment is most successful. Current breast screening programmes are one-size-fits-all which all women above a certain age threshold are encouraged to participate. However, breast cancer risk varies by individual. The BREAst screening Tailored for HEr (BREATHE) study aims to assess acceptability of a comprehensive risk-based personalised breast screening in Singapore. Advancing beyond the current age-based screening paradigm, BREATHE integrates both genetic and non-genetic breast cancer risk prediction tools to personalise screening recommendations. BREATHE is a cohort study targeting to recruit ~3,500 women. The first recruitment visit will include questionnaires and a buccal cheek swab. After receiving a tailored breast cancer risk report, participants will attend an in-person risk review, followed by a final session assessing the acceptability of our risk stratification programme. Risk prediction is based on: a) Gail model (non-genetic), b) mammographic density and recall, c) BOADICEA predictions (breast cancer predisposition genes), and d) breast cancer polygenic risk score. For national implementation of personalised risk-based breast screening, exploration of the acceptability within the target populace is critical, in addition to validated predication tools. To our knowledge, this is the first study to implement a comprehensive risk-based mammography screening programme in Asia. The BREATHE study will provide essential data for policy implementation which will transform the health system to deliver a better health and healthcare outcomes.
Collapse
|
6
|
Liu L, Hao X, Song Z, Zhi X, Zhang S, Zhang J. Correlation between family history and characteristics of breast cancer. Sci Rep 2021; 11:6360. [PMID: 33737705 PMCID: PMC7973811 DOI: 10.1038/s41598-021-85899-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/08/2021] [Indexed: 12/31/2022] Open
Abstract
Family history is a major risk factor for breast cancer; approximately 5–10% cases of breast cancer are associated with a family history. Herein, we investigated the link between family history and breast cancer features to elucidate the importance of family history in the diagnosis and treatment of breast cancer. Data from 10,549 patients with breast cancer were collected from 2014 to 2017. Detailed information about the family history of the patients including the degree and number of relatives affected and the types of cancer was recorded. The tumors were pathologically and clinically classified based on the stage, grade, ER, PR, HER2, Ki-67 status, and subtypes, according to standard guidelines. Data were analyzed using χ2 test and multiple logistic regression. Patients with a family history of other cancer types were significantly older at diagnosis than patients with a family history of breast/ovarian cancer (p = 0.002) and those without a family history of cancer (p < 0.001). Patients without a family history of cancer were typically diagnosed at a later stage, including high frequency in N2 (p = 0.035) and TNM stage III (p = 0.015). Compared with patients with second-/third-degree relatives, those with first-degree relatives having breast/ovarian cancer had a higher median age (54.1, p < 0.001) at diagnosis and showed more advanced disease. No significant difference was found between ER, PR, and HER2 status in patients with and without a family history of cancer. Family history of breast cancer can influence the cancer characteristics of the patients at diagnosis, especially patient age, tumor stage, and grade.
Collapse
Affiliation(s)
- Lei Liu
- The Third Department of Breast Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Huanhu West Road, Tianjin, 300000, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300000, China
| | - Xiaomeng Hao
- The Third Department of Breast Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Huanhu West Road, Tianjin, 300000, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300000, China
| | - Zian Song
- The Third Department of Breast Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Huanhu West Road, Tianjin, 300000, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300000, China
| | - Xiangcheng Zhi
- The Third Department of Breast Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Huanhu West Road, Tianjin, 300000, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300000, China
| | - Sheng Zhang
- The Third Department of Breast Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Huanhu West Road, Tianjin, 300000, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300000, China
| | - Jin Zhang
- The Third Department of Breast Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Huanhu West Road, Tianjin, 300000, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, China. .,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300000, China.
| |
Collapse
|