Atakpa EC, Buist DSM, Aiello Bowles EJ, Cuzick J, Brentnall AR. Development and evaluation of a method to assess breast cancer risk using a longitudinal history of mammographic density: a cohort study.
Breast Cancer Res 2023;
25:147. [PMID:
38001476 PMCID:
PMC10668455 DOI:
10.1186/s13058-023-01744-y]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND
Women with dense breasts have an increased risk of breast cancer. However, breast density is measured with variability, which may reduce the reliability and accuracy of its association with breast cancer risk. This is particularly relevant when visually assessing breast density due to variation in inter- and intra-reader assessments. To address this issue, we developed a longitudinal breast density measure which uses an individual woman's entire history of mammographic density, and we evaluated its association with breast cancer risk as well as its predictive ability.
METHODS
In total, 132,439 women, aged 40-73 yr, who were enrolled in Kaiser Permanente Washington and had multiple screening mammograms taken between 1996 and 2013 were followed up for invasive breast cancer through 2014. Breast Imaging Reporting and Data System (BI-RADS) density was assessed at each screen. Continuous and derived categorical longitudinal density measures were developed using a linear mixed model that allowed for longitudinal density to be updated at each screen. Predictive ability was assessed using (1) age and body mass index-adjusted hazard ratios (HR) for breast density (time-varying covariate), (2) likelihood-ratio statistics (ΔLR-χ2) and (3) concordance indices.
RESULTS
In total, 2704 invasive breast cancers were diagnosed during follow-up (median = 5.2 yr; median mammograms per woman = 3). When compared with an age- and body mass index-only model, the gain in statistical information provided by the continuous longitudinal density measure was 23% greater than that provided by BI-RADS density (follow-up after baseline mammogram: ΔLR-χ2 = 379.6 (degrees of freedom (df) = 2) vs. 307.7 (df = 3)), which increased to 35% (ΔLR-χ2 = 251.2 vs. 186.7) for follow-up after three mammograms (n = 76,313, 2169 cancers). There was a sixfold difference in observed risk between densest and fattiest eight-category longitudinal density (HR = 6.3, 95% CI 4.7-8.7), versus a fourfold difference with BI-RADS density (HR = 4.3, 95% CI 3.4-5.5). Discriminatory accuracy was marginally greater for longitudinal versus BI-RADS density (c-index = 0.64 vs. 0.63, mean difference = 0.008, 95% CI 0.003-0.012).
CONCLUSIONS
Estimating mammographic density using a woman's history of breast density is likely to be more reliable than using the most recent observation only, which may lead to more reliable and accurate estimates of individual breast cancer risk. Longitudinal breast density has the potential to improve personal breast cancer risk estimation in women attending mammography screening.
Collapse