1
|
Östenson B, Ostenfeld E, Werther-Evaldsson A, Roijer A, Bakos Z, Kanski M, Heiberg E, Arheden H, Borgquist R, Carlsson M. Regional contributions to left ventricular stroke volume determined by cardiac magnetic resonance imaging in cardiac resynchronization therapy. BMC Cardiovasc Disord 2021; 21:519. [PMID: 34702172 PMCID: PMC8549254 DOI: 10.1186/s12872-021-02325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cardiac resynchronization therapy (CRT) restores ventricular synchrony and induces left ventricular (LV) reverse remodeling in patients with heart failure (HF) and dyssynchrony. However, 30% of treated patients are non-responders despite all efforts. Cardiac magnetic resonance imaging (CMR) can be used to quantify regional contributions to stroke volume (SV) as potential CRT predictors. The aim of this study was to determine if LV longitudinal (SVlong%), lateral (SVlat%), and septal (SVsept%) contributions to SV differ from healthy controls and investigate if these parameters can predict CRT response. METHODS Sixty-five patients (19 women, 67 ± 9 years) with symptomatic HF (LVEF ≤ 35%) and broadened QRS (≥ 120 ms) underwent CMR. SVlong% was calculated as the volume encompassed by the atrioventricular plane displacement (AVPD) from end diastole (ED) to end systole (ES) divided by total SV. SVlat%, and SVsept% were calculated as the volume encompassed by radial contraction from ED to ES. Twenty age- and sex-matched healthy volunteers were used as controls. The regional measures were compared to outcome response defined as ≥ 15% decrease in echocardiographic LV end-systolic volume (LVESV) from pre- to 6-months post CRT (delta, Δ). RESULTS AVPD and SVlong% were lower in patients compared to controls (8.3 ± 3.2 mm vs 15.3 ± 1.6 mm, P < 0.001; and 53 ± 18% vs 64 ± 8%, P < 0.01). SVsept% was lower (0 ± 15% vs 10 ± 4%, P < 0.01) with a higher SVlat% in the patient group (42 ± 16% vs 29 ± 7%, P < 0.01). There were no differences between responders and non-responders in neither SVlong% (P = 0.87), SVlat% (P = 0.09), nor SVsept% (P = 0.65). In patients with septal net motion towards the right ventricle (n = 28) ΔLVESV was - 18 ± 22% and with septal net motion towards the LV (n = 37) ΔLVESV was - 19 ± 23% (P = 0.96). CONCLUSIONS Longitudinal function, expressed as AVPD and longitudinal contribution to SV, is decreased in patients with HF scheduled for CRT. A larger lateral contribution to SV compensates for the abnormal septal systolic net movement. However, LV reverse remodeling could not be predicted by these regional contributors to SV.
Collapse
Affiliation(s)
- Björn Östenson
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Ellen Ostenfeld
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anna Werther-Evaldsson
- Section for Heart Failure and Valvular Disease, Department of Clinical Sciences Lund, Cardiology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anders Roijer
- Section for Heart Failure and Valvular Disease, Department of Clinical Sciences Lund, Cardiology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Zoltan Bakos
- Section of Arrhythmia, Department of Clinical Sciences Lund, Cardiology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Mikael Kanski
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Einar Heiberg
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Håkan Arheden
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Rasmus Borgquist
- Section of Arrhythmia, Department of Clinical Sciences Lund, Cardiology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Marcus Carlsson
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
2
|
Que Q, Tang Z, Wang R, Zeng Z, Wang J, Chua M, Gee TS, Yang X, Veeravalli B. CardioXNet: Automated Detection for Cardiomegaly Based on Deep Learning. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:612-615. [PMID: 30440471 DOI: 10.1109/embc.2018.8512374] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this paper, we present an automated procedure to determine the presence of cardiomegaly on chest X-ray image based on deep learning. The proposed algorithm CardioXNet uses deep learning methods U-NET and cardiothoracic ratio for diagnosis of cardiomegaly from chest X-rays. U-NET learns the segmentation task from the ground truth data. OpenCV is used to denoise and maintain the precision of region of interest once minor errors occur. Therefore, Cardiothoracic ratio (CTR) is calculated as a criterion to determine cardiomegaly from U-net segmentations. End-to-end Dense-Net neural network is used as baseline. This study has shown that the feasibility of combing deep learning segmentation and medical criterion to automatically recognize heart disease in medical images with high accuracy and agreement with the clinical results.
Collapse
|
3
|
Harris JM, Brierley RC, Pufulete M, Bucciarelli-Ducci C, Stokes EA, Greenwood JP, Dorman SH, Anderson RA, Rogers CA, Wordsworth S, Berry S, Reeves BC. A national registry to assess the value of cardiovascular magnetic resonance imaging after primary percutaneous coronary intervention pathway activation: a feasibility cohort study. HEALTH SERVICES AND DELIVERY RESEARCH 2019. [DOI: 10.3310/hsdr07240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background
Cardiovascular magnetic resonance (CMR) is increasingly used in patients who activate the primary percutaneous coronary intervention (PPCI) pathway to assess heart function. It is uncertain whether having CMR influences patient management or the risk of major adverse cardiovascular events in these patients.
Objective
To determine whether or not it is feasible to set up a national registry, linking routinely collected data from hospital information systems (HISs), to investigate the role of CMR in patients who activate the PPCI pathway.
Design
A feasibility prospective cohort study.
Setting
Four 24/7 PPCI hospitals in England and Wales (two with and two without a dedicated CMR facility).
Participants
Patients who activated the PPCI pathway and underwent an emergency coronary angiogram.
Interventions
CMR either performed or not performed within 10 weeks of the index event.
Main outcome measures
A. Feasibility parameters – (1) patient consent implemented at all hospitals, (2) data extracted from more than one HIS and successfully linked for > 90% of consented patients at all four hospitals, (3) HIS data successfully linked with Hospital Episode Statistics (HES) and Patient Episode Database Wales (PEDW) for > 90% of consented patients at all four hospitals and (4) CMR requested and carried out for ≥ 10% of patients activating the PPCI pathway in CMR hospitals. B. Key drivers of cost-effectiveness for CMR (identified from simple cost-effectiveness models) in patients with (1) multivessel disease and (2) unobstructed coronary arteries. C. A change in clinical management arising from having CMR (defined using formal consensus and identified using HES follow-up data in the 12 months after the index event).
Results
A. (1) Consent was implemented (for all hospitals, consent rates were 59–74%) and 1670 participants were recruited. (2) Data submission was variable – clinical data available for ≥ 82% of patients across all hospitals, biochemistry and echocardiography (ECHO) data available for ≥ 98%, 34% and 87% of patients in three hospitals and medications data available for 97% of patients in one hospital. (3) HIS data were linked with hospital episode data for 99% of all consented patients. (4) At the two CMR hospitals, 14% and 20% of patients received CMR. B. In both (1) multivessel disease and (2) unobstructed coronary arteries, the difference in quality-adjusted life-years (QALYs) between CMR and no CMR [‘current’ comparator, stress ECHO and standard ECHO, respectively] was very small [0.0012, 95% confidence interval (CI) –0.0076 to 0.0093 and 0.0005, 95% CI –0.0050 to 0.0077, respectively]. The diagnostic accuracy of the ischaemia tests was the key driver of cost-effectiveness in sensitivity analyses for both patient subgroups. C. There was consensus that CMR leads to clinically important changes in management in five patient subgroups. Some changes in management were successfully identified in hospital episode data (e.g. new diagnoses/procedures, frequency of outpatient episodes related to cardiac events), others were not (e.g. changes in medications, new diagnostic tests).
Conclusions
A national registry is not currently feasible. Patients were consented successfully but conventional consent could not be implemented nationally. Linking HIS and hospital episode data was feasible but HIS data were not uniformly available. It is feasible to identify some, but not all, changes in management in the five patient subgroups using hospital episode data. The delay in obtaining hospital episode data influenced the relevance of some of our study objectives.
Future work
To test the feasibility of conducting the study using national data sets (e.g. HES, British Cardiovascular Intervention Society audit database, Diagnostic Imaging Dataset, Clinical Practice Research Datalink).
Funding
The National Institute for Health Research (NIHR) Health Services and Delivery Research programme. This study was designed and delivered in collaboration with the Clinical Trials and Evaluation Unit, a UK Clinical Research Collaboration-registered clinical trials unit that, as part of the Bristol Trials Centre, is in receipt of NIHR clinical trials unit support funding.
Collapse
Affiliation(s)
- Jessica M Harris
- Clinical Trials and Evaluation Unit, Bristol Trials Centre, University of Bristol, Bristol, UK
| | - Rachel C Brierley
- Clinical Trials and Evaluation Unit, Bristol Trials Centre, University of Bristol, Bristol, UK
| | - Maria Pufulete
- Clinical Trials and Evaluation Unit, Bristol Trials Centre, University of Bristol, Bristol, UK
| | - Chiara Bucciarelli-Ducci
- National Institute for Health Research (NIHR) Bristol Cardiovascular Research Unit, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Elizabeth A Stokes
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - John P Greenwood
- Multidisciplinary Cardiovascular Research Centre and Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Stephen H Dorman
- National Institute for Health Research (NIHR) Bristol Cardiovascular Research Unit, Bristol Heart Institute, University of Bristol, Bristol, UK
| | | | - Chris A Rogers
- Clinical Trials and Evaluation Unit, Bristol Trials Centre, University of Bristol, Bristol, UK
| | - Sarah Wordsworth
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Sunita Berry
- NHS England, South West Clinical Networks and Senate, Bristol, UK
| | - Barnaby C Reeves
- Clinical Trials and Evaluation Unit, Bristol Trials Centre, University of Bristol, Bristol, UK
| |
Collapse
|
4
|
Wong C, Chen S, Iyngkaran P. Cardiac Imaging in Heart Failure with Comorbidities. Curr Cardiol Rev 2017; 13:63-75. [PMID: 27492227 PMCID: PMC5324322 DOI: 10.2174/1573403x12666160803100928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/19/2023] Open
Abstract
Imaging modalities stand at the frontiers for progress in congestive heart failure (CHF) screening, risk stratification and monitoring. Advancements in echocardiography (ECHO) and Magnetic Resonance Imaging (MRI) have allowed for improved tissue characterizations, cardiac motion analysis, and cardiac performance analysis under stress. Common cardiac comorbidities such as hypertension, metabolic syndromes and chronic renal failure contribute to cardiac remodeling, sharing similar pathophysiological mechanisms starting with interstitial changes, structural changes and finally clinical CHF. These imaging techniques can potentially detect changes earlier. Such information could have clinical benefits for screening, planning preventive therapies and risk stratifying patients. Imaging reports have often focused on traditional measures without factoring these novel parameters. This review is aimed at providing a synopsis on how we can use this information to assess and monitor improvements for CHF with comorbidities.
Collapse
Affiliation(s)
- Chiew Wong
- Flinders University, NT Medical School, Darwin Australia
| | - Sylvia Chen
- Flinders University, NT Medical School, Darwin Australia
| | | |
Collapse
|
5
|
Cardiac Magnetic Resonance Imaging in Ventricular Remodelling. CURRENT CARDIOVASCULAR IMAGING REPORTS 2015. [DOI: 10.1007/s12410-015-9335-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Coverstone E, Sheehy J, Kleiger RE, Smith TW. The postimplantation electrocardiogram predicts clinical response to cardiac resynchronization therapy. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2015; 38:572-80. [PMID: 25732143 DOI: 10.1111/pace.12609] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/12/2015] [Accepted: 02/09/2015] [Indexed: 12/01/2022]
Abstract
BACKGROUND Biventricular (BiV) pacing for cardiac resynchronization therapy (CRT) is intended to improve left ventricular function by coordinating systolic activity of the septum and free walls. Optimal resynchronization should be manifested by 12-lead electrocardiogram (ECG) patterns consistent with resynchronized activation, a tall (≥4 mm) R wave in V1, and predominant negative deflection in lead I (RV1SI). We investigated whether the presence or absence of RV1SI predicts heart failure outcomes within 1 year of CRT implant. METHODS Two independent physicians reviewed the paced ECG of 213 patients post-CRT device implantation with disputes resolved by a third reviewer. The primary end points of all-cause death, unplanned hospitalization, left ventricular assist device implant, or transplant within a 1-year follow-up were blindly adjudicated according to standard definitions. Groups were compared via Kaplan-Meier estimates and Cox proportional hazards models to determine association with event-free survival. RESULTS Among CRT patients postimplantation, 56 (26.3%) exhibited the RV1SI pattern on ECG. Patients with the RV1SI pattern were significantly less likely to achieve the primary end point as compared to patients without the RV1SI pattern (33.9% vs 52.2%; Log Rank P = 0.022). This difference was driven by a significantly lower risk for unplanned hospitalization among patients with the RV1SI pattern (hazard ratio = 0.510; confidence interval [0.298, 0.876]). The predictive value remained after adjustment for potential confounders (P = 0.004). CONCLUSIONS The 12-lead ECG postimplantation predicts clinical outcomes of BiV pacing. Such prediction may be useful in predicting the need for alternative or advanced heart failure therapies. Further study into ECG patterns may help to prospectively guide CRT.
Collapse
Affiliation(s)
- Edward Coverstone
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | |
Collapse
|
7
|
Bajraktari G, Henein MY. The clinical dilemma of quantifying mechanical left ventricular dyssynchrony for cardiac resynchronization therapy: segmental or global? Echocardiography 2015; 32:150-5. [PMID: 25250865 DOI: 10.1111/echo.12775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Heart failure (HF) represents a serious clinical and public cause of mortality, morbidity, as well as healthcare expenditures. Guidelines for treatment of HF join in recommending multimedical regimen at targeted doses as the best medical strategy, despite that a significant percentage of patients remain symptomatic. Studies have shown that these patients might benefit from cardiac resynchronization therapy (CRT), particularly those presenting with broad QRS duration, >135 msec. Trials have already shown that CRT results in improved morbidity and survival of these patients particularly those in New York Heart Association class III-IV HF, but almost 30% do not show any symptomatic or survival benefit, hence are classified as nonresponders. Exhaustive efforts have been made in using noninvasive methods of assessing left ventricle (LV) dyssynchrony in predicting nonresponders to CRT, including Doppler echocardiography, magnetic resonance imaging, and even single photon emission computed tomography analysis, but only with modest success. In this report, we aimed to review the available evidence for assessing markers of mechanical LV dyssynchrony by various echocardiographic modalities and their respective strength in predicting favorable response to CRT treatment, comparing global with segmental ones. While the accuracy of segmental markers of dyssynchrony in predicting satisfactory response to CRT remains controversial because of various technical limitations, global markers seem easier to measure, reproducible, and potentially accurate in reflecting overall cavity response and its clinical implications. More studies are needed to qualify this proposal.
Collapse
Affiliation(s)
- Gani Bajraktari
- Public Health and Clinical Medicine, Umeå University, Umeå, Sweden; Clinic of Cardiology, University Clinical Center of Kosova, University of Prishtina, Republic of Kosovo
| | | |
Collapse
|
8
|
|