1
|
Park CH, Kim PK, Kim Y, Kim TH, Hong YJ, Ahn E, Cha YJ, Choi BW. Development and validation of cardiac diffusion weighted magnetic resonance imaging for the diagnosis of myocardial injury in small animal models. Sci Rep 2024; 14:3552. [PMID: 38346998 PMCID: PMC10861543 DOI: 10.1038/s41598-024-52746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
Cardiac diffusion weighted-magnetic resonance imaging (DWI) has slowly developed due to its technical difficulties. However, this limitation could be overcome by advanced techniques, including a stimulated echo technique and a gradient moment nulling technique. This study aimed to develop and validate a high-order DWI sequence, using echo-planar imaging (EPI) and second-order motion-compensated (M012) diffusion gradient applied to cardiac imaging in small-sized animals with fast heart and respiratory rates, and to investigate the feasibility of cardiac DWI, diagnosing acute myocardial injury in isoproterenol-induced myocardial injury rat models. The M012 diffusion gradient sequence was designed for diffusion tensor imaging of the rat myocardium and validated in the polyvinylpyrrolidone phantom. Following sequence optimization, 23 rats with isoproterenol-induced acute myocardial injury and five healthy control rats underwent cardiac MRI, including cine imaging, T1 mapping, and DWI. Diffusion gradient was applied using a 9.4-T MRI scanner (Bruker, BioSpec 94/20, gradient amplitude = 440 mT/m, maximum slew rate = 3440 T/m/s) with double gating (electrocardiogram and respiratory gating). Troponin I was used as a serum biomarker for myocardial injury. Histopathologic examination of the heart was subsequently performed. The developed DWI sequence using EPI and M012 provided the interpretable images of rat hearts. The apparent diffusion coefficient (ADC) values were significantly higher in rats with acute myocardial injury than in the control group (1.847 ± 0.326 * 10-3 mm2/s vs. 1.578 ± 0.144 * 10-3 mm2/s, P < 0.001). Troponin I levels were increased in the blood samples of rats with acute myocardial injury (P < 0.001). Histopathologic examinations detected myocardial damage and subendocardial fibrosis in rats with acute myocardial injury. The newly developed DWI technique has the ability to detect myocardial injury in small animal models, representing high ADC values on the myocardium with isoproterenol-induced injury.
Collapse
Affiliation(s)
- Chul Hwan Park
- Department of Radiology and the Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Pan Ki Kim
- Department of Radiology and the Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoonjung Kim
- Department of Laboratory Medicine, Gangnam Severance Hospital Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Hoon Kim
- Department of Radiology and the Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoo Jin Hong
- Department of Radiology and the Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eunkyung Ahn
- Department of Radiology and the Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea.
| | - Byoung Wook Choi
- Department of Radiology and the Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Wei X, Lin L, Zhang G, Zhou X. Cardiovascular Magnetic Resonance Imaging in the Early Detection of Cardiotoxicity Induced by Cancer Therapies. Diagnostics (Basel) 2022; 12:1846. [PMID: 36010197 PMCID: PMC9406931 DOI: 10.3390/diagnostics12081846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
The significant progress in cancer treatment, including chemotherapy, immunotherapy, radiotherapy, and combination therapies, has led to higher long-term survival rates in cancer patients, while the cardiotoxicity caused by cancer treatment has become increasingly prominent. Cardiovascular magnetic resonance (CMR) is a non-invasive comprehensive imaging modality that provides not only anatomical information, but also tissue characteristics and cardiometabolic and energetic assessment, leading to its increased use in the early identification of cardiotoxicity, and is of major importance in improving the survival rate of cancer patients. This review focused on CMR techniques, including myocardial strain analysis, T1 mapping, T2 mapping, and extracellular volume fraction (ECV) calculation in the detection of early myocardial injury induced by cancer therapies. We summarized the existing studies and ongoing clinical trials using CMR for the assessment of subclinical ventricular dysfunction and myocardial changes at the tissue level. The main focus was to explore the potential of clinical and preclinical CMR techniques for continuous non-invasive monitoring of myocardial toxicity associated with cancer therapy.
Collapse
Affiliation(s)
| | | | - Guizhi Zhang
- Department of Radiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518036, China; (X.W.); (L.L.)
| | - Xuhui Zhou
- Department of Radiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518036, China; (X.W.); (L.L.)
| |
Collapse
|
3
|
Jiang J, Cui L, Xiao Y, Zhou X, Fu Y, Xu G, Shao W, Chen W, Hu S, Hu C, Hao S. B 1 -Corrected T1 Mapping in Lung Cancer: Repeatability, Reproducibility, and Identification of Histological Types. J Magn Reson Imaging 2021; 54:1529-1540. [PMID: 34291852 DOI: 10.1002/jmri.27844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND T1 mapping can potentially quantitatively assess the intrinsic properties of tumors. B1 correction can reduce the magnetic field inhomogeneity. PURPOSE To assess the repeatability and reproducibility of B1 -corrected T1 mapping for lung cancer and the ability to identify pathological types. STUDY TYPE Prospective reproducibility study. POPULATION Sixty lung cancer patients (22 with emphysema) with a total of 60 lesions (adenocarcinoma [n = 23], squamous cell carcinoma [n = 19], and small-cell lung cancer [SCLC] [n = 18]). FIELD STRENGTH/SEQUENCE A 3 T/B1 -corrected 3D variable flip angle T1 mapping and free-breathing diffusion-weighted imaging. ASSESSMENT Intraobserver, interobserver, and test-retest reproducibility of minimum, maximum, mean, and SD of lung tumor T1 values were assessed. The correlation between mean T1 and apparent diffusion coefficient (ADC) and differences between different histological types of lung cancer were evaluated. STATISTICAL TESTS Intraclass correlation coefficients (ICCs), within-subject coefficients of variation (WCVs), Bland-Altman plots, Pearson's correlation coefficient (r), and analysis of variance (ANOVA). A P value <0.05 was considered to be statistically significant. RESULTS No significant differences were found in minimum, maximum, mean, and SD T1 values for repeated measurements (intraobserver and interobserver) and repeated examinations (P = 0.103-0.979). All parameters showed good intraobserver, interobserver and test-retest reproducibility (ICC, 0.780-0.978), except the maximum T1 value (ICC, 0.645-0.922). The mean T1 exhibited the best reproducibility and repeatability, with an average difference <6% for repeated measurements, <8% for repeated scans in lung cancer patients, and<10% for repeated scans in those with emphysema. The mean T1 correlated moderately with ADC (r = -0.580, -0.516, and -0.511 for observers A, B, and C). Both mean T1 and mean ADC were significantly different in SCLC patients compared with those in adenocarcinoma and squamous cell carcinoma patients. DATA CONCLUSION The mean T1 from B1 -corrected T1 mapping is a repeatable parameter with the potential to identify histological types of lung cancer and thus may be a promising imaging biomarker for characterizing lung cancer. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Jianqin Jiang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Radiology, Affiliated Hospital 4 of Nantong University and The First people's Hospital of Yancheng, Yancheng, China
| | - Lei Cui
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Yong Xiao
- Department of Radiology, Affiliated Hospital 4 of Nantong University and The First people's Hospital of Yancheng, Yancheng, China
| | - Xiao Zhou
- Department of Radiology, Affiliated Hospital 4 of Nantong University and The First people's Hospital of Yancheng, Yancheng, China
| | - Yigang Fu
- Department of Radiology, Affiliated Hospital 4 of Nantong University and The First people's Hospital of Yancheng, Yancheng, China
| | - Gaofeng Xu
- Department of Radiology, Affiliated Hospital 4 of Nantong University and The First people's Hospital of Yancheng, Yancheng, China
| | - Weiwei Shao
- Department of Pathology, Affiliated Hospital 4 of Nantong University and The First people's Hospital of Yancheng, Yancheng, China
| | - Wang Chen
- Department of Radiology, Affiliated Hospital 4 of Nantong University and The First people's Hospital of Yancheng, Yancheng, China
| | - Su Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Medical Imaging, Soochow University, Suzhou, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Medical Imaging, Soochow University, Suzhou, China
| | - Shaowei Hao
- Siemens Healthineers Digital Technology Co., Ltd, Shanghai, China
| |
Collapse
|
4
|
Francone M, Aquaro GD, Barison A, Castelletti S, de Cobelli F, de Lazzari M, Esposito A, Focardi M, di Renzi P, Indolfi C, Lanzillo C, Lovato L, Maestrini V, Mercuro G, Natale L, Mantini C, Polizzi G, Rabbat M, Secchi F, Secinaro A, di Cesare E, Pontone G. Appropriate use criteria for cardiovascular MRI: SIC - SIRM position paper Part 2 (myocarditis, pericardial disease, cardiomyopathies and valvular heart disease). J Cardiovasc Med (Hagerstown) 2021; 22:515-529. [PMID: 34076599 DOI: 10.2459/jcm.0000000000001170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiovascular magnetic resonance (CMR) has emerged as an accurate diagnostic technique for the evaluation of patients with cardiac disease in the majority of clinical settings, thanks to an established additional diagnostic and prognostic value. This document has been developed by a joined group of experts of the Italian Society of Cardiology (SIC) and Italian Society of Radiology (SIRM) to provide a summary about the current state of technology and clinical applications of CMR, to improve the clinical diagnostic pathways and to promote its inclusion in clinical practice. The writing committee consisted of members and experts of both societies in order to develop a more integrated approach in the field of cardiac imaging. This section 2 will cover myocarditis, pericardial disease, cardiomyopathies and valvular heart disease.
Collapse
Affiliation(s)
- Marco Francone
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan
| | | | | | - Silvia Castelletti
- Istituto Auxologico Italiano IRCCS, Center for the Cardiac Arrhythmias of Genetic Origin
| | - Francesco de Cobelli
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy Department of Radiology, IRCCS San Raffaele Scientific Institute, Milan
| | - Manuel de Lazzari
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| | - Antonio Esposito
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy Department of Radiology, IRCCS San Raffaele Scientific Institute, Milan
| | - Marta Focardi
- Department of Cardiology, Azienda Ospedaliera Universitaria Senese, Siena
| | - Paolo di Renzi
- U.O.C. Radiologia, Ospedale 'San Giovanni Calibita' Fatebenefratelli - Isola Tiberina - Rome
| | - Ciro Indolfi
- Division of Cardiology, University Magna Graecia, Italy and Mediterranea Cardiocentro, Naples
| | | | - Luigi Lovato
- Cardiovascular Radiology Unit, Department of Imaging S.Orsola-Malpighi University Hospital, Bologna
| | - Viviana Maestrini
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari
| | - Luigi Natale
- Department of Diagnostic Imaging, Oncological Radiotherapy, and Hematology - Diagnostic Imaging Area
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS
- Universita ' Cattolica del Sacro Cuore, Rome
| | - Cesare Mantini
- Department of Neuroscience, Imaging and Clinical Sciences, 'G. d'Annunzio' University, Chieti
| | - Gesualdo Polizzi
- Unit of Radiodiagnostics II, University Hospital 'Policlinico-Vittorio Emanuele', Catania, Italy
| | - Mark Rabbat
- Loyola University of Chicago, Chicago
- Edward Hines Jr. VA Hospital, Hines, Illinois, USA
| | - Francesco Secchi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan
- Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese
| | - Aurelio Secinaro
- Advanced Cardiovascular Imaging Unit, Department of Imaging, Bambino Gesù Children's Hospital, Rome
| | - Ernesto di Cesare
- Department of Life, Healt and Enviromental Sciences, University of L'Aquila, L'Aquila
| | | |
Collapse
|
5
|
Sharifian M, Rezaeian N, Asadian S, Mohammadzadeh A, Nahardani A, Kasani K, Toloueitabar Y, Farahmand AM, Hosseini L. Efficacy of Novel Noncontrast Cardiac Magnetic Resonance Methods in Indicating Fibrosis in Hypertrophic Cardiomyopathy. Cardiol Res Pract 2021; 2021:9931136. [PMID: 34123419 PMCID: PMC8169266 DOI: 10.1155/2021/9931136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/19/2021] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE In hypertrophic cardiomyopathy (HCM), myocardial fibrosis is routinely shown by late gadolinium enhancement (LGE) in cardiac magnetic resonance (CMR) imaging. We evaluated the efficacy of 2 novel contrast-free CMR methods, namely, diffusion-weighted imaging (DWI) and feature-tracking (FT) method, in detecting myocardial fibrosis. METHODS This cross-sectional study was conducted on 26 patients with HCM. Visual and quantitative comparisons were made between DWI and LGE images. Regional longitudinal, circumferential, and radial strains were compared between LGE-positive and LGE-negative segments. Moreover, global strains were compared between LGE-positive and LGE-negative patients as well as between patients with mild and marked LGE. RESULTS All 3 strains showed significant differences between LGE-positive and LGE-negative segments (P < 0.001). The regional longitudinal and circumferential strain parameters showed significant associations with LGE (P < 0.001), while regional circumferential strain was the only independent predictor of LGE in logistic regression models (OR: 1.140, 95% CI: 1.073 to 1.207, P < 0.001). A comparison of global strains between patients with LGE percentages of below 15% and above 15% demonstrated that global circumferential strain was the only parameter to show impairment in the group with marked myocardial fibrosis, with borderline significance (P=0.09). A review of 212 segments demonstrated a qualitative visual agreement between DWI and LGE in 193 segments (91%). The mean apparent diffusion coefficient was comparable between LGE-positive and LGE-negative segments (P=0.51). CONCLUSIONS FT-CMR, especially regional circumferential strain, can reliably show fibrosis-containing segments in HCM. Further, DWI can function as an efficient qualitative method for the estimation of the fibrosis extent in HCM.
Collapse
Affiliation(s)
- Maedeh Sharifian
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Rezaeian
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sanaz Asadian
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammadzadeh
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Nahardani
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Kianosh Kasani
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Yaser Toloueitabar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Leila Hosseini
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Wu R, An DA, Shi RY, Chen BH, Wu CW, Jiang M, Xu JR, Wu LM, Pu J. The feasibility and diagnostic value of intravoxel incoherent motion diffusion-weighted imaging in the assessment of myocardial fibrosis in hypertrophic cardiomyopathy patients. Eur J Radiol 2020; 132:109333. [PMID: 33068839 DOI: 10.1016/j.ejrad.2020.109333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 02/27/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To investigate the feasibility and diagnostic value of intravoxel incoherent motion (IVIM) in the assessment of myocardial fibrosis in hypertrophic cardiomyopathy (HCM) patients. METHODS Fifty-five HCM patients underwent IVIM diffusion-weighted cardiovascular resonance imaging; Cine, T1 mapping, IVIM and late gadolinium enhancement (LGE) were performed. The relationship of strain, pre T1, extracellular volume (ECV), IVIM-derived parameters (D, D* and f) and LGE were analyzed based on 16 American Heart Association segments. Abnormal segments of myocardial fibrosis were defined as: the presence of LGE (LGE+) or ECV ≥ 29.6 %. RESULTS D parameter was significantly increased in LGE + vs LGE- (1.89 ± 0.14 μm2/ms vs. 1.63 ± 0.12 μm2/ms, p < 0.001) and ECV ≥ 29.6 % vs ECV < 29.6 % (1.84 ± 0.13 μm2/ms vs. 1.61 ± 0.12 μm2/ms, p < 0.001), respectively. D* and f parameters were significantly decreased in LGE + vs LGE- (D*: 34.9 ± 6.6 μm2/m vs 55.2 ± 11.4 μm2/m, p < 0.001; f: 10.8 ± 1.29 % vs 12.5 ± 1.26 %, p < 0.001) and ECV ≥ 29.6 % vs ECV < 29.6 % (D*: 37.5 ± 6.9 μm2/m vs 59.6 ± 9.2 μm2/m, p < 0.001; f: 10.9 ± 1.1 % vs 13.00 ± 1.0 %, p = 0.021), respectively. Moreover, significant correlations were demonstrated between D and ECV, as well as D* and f. CONCLUSIONS IVIM DW-CMR has proven to be ingenious in the investigation of myocardial fibrosis; D* and f parameters may have potential value to assess the perfusion status of fibrotic regions in HCM patients.
Collapse
Affiliation(s)
- Rui Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China
| | - Dong-Aolei An
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China
| | - Ruo-Yang Shi
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China
| | - Bing-Hua Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China
| | - Chong-Wen Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China
| | - Meng Jiang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China
| | - Jian-Rong Xu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China
| | - Lian-Ming Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China.
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China.
| |
Collapse
|
7
|
An DA, Shi RY, Wu R, Suo S, Han TT, Xu JR, Pu J, Wu LM. Different Myocardial Perfusion Status in Acute Myocardial Infarction and Infarct-like Myocarditis: A Novel Intravoxel Incoherent Motion Diffusion-weighted Imaging based MRI Study. Acad Radiol 2020; 27:1093-1102. [PMID: 31780393 DOI: 10.1016/j.acra.2019.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/04/2019] [Accepted: 10/16/2019] [Indexed: 11/15/2022]
Abstract
PURPOSE The following study evaluated the diagnostic value of myocardial perfusion in patients with acute myocardial infarction (AMI) and "infarct-like myocarditis" using Intravoxel Incoherent Motion-Diffusion Weighted Imaging (IVIM-DWI imaging). METHOD CMR data from 20 patients with suspected AMI, 20 patients with "infarct-like myocarditis" and 20 volunteers were retrospectively analyzed. IVIM-DWI data were acquired using multi-b value single-shot spin-echo echo-planar imaging sequence. IVIM-DWI data were generated according to the 16-segments AHA-model. Cine sequences covering left and right ventricle in short axis and three long axis were analyzed using a dedicated tissue-tracking algorithm. RESULTS Overall, the AMI T2+ segments exhibited decreased apparent diffusion coefficient (ADC), ADCslow, ADC fast and f values (1.39 ± 0.23 μm2/ms, 1.36 ± 0.23 μm2/ms, 70.77 ± 7.04 μm2/ms, and 0.1243 ± 0.01, respectively) compared to infarct-like myocarditis T2+ (1.48 ± 0.11 μm2/ms, 1.44 ± 0.11 μm2/ms, 87.66 ± 12.50 μm2/ms, and 0.1411 ± 0.02, respectively) and normal controls (1.55 ± 0.07 μm2/ms, 1.52 ± 0.06 μm2/ms, 108.84 ± 4.06 μm2/ms, and 0.1599 ± 0.01, respectively) (all p < 0.05). In addition, AMI LGE+ segments showed significantly lower IVIM-DWI associated parameters (1.34 ± 0.21 μm2/ms, 1.31 ± 0.21 μm2/ms, 68.75 ± 6.33μm2/ms, and 0.1198 ± 0.01) compared to infarct-like myocarditis LGE+ (1.42 ± 0.06 μm2/ms, 1.38 ± 0.08 μm2/ms, 79.12 ± 5.70 μm2/ms, and 0.1313 ± 0.02) (p < 0.05). Moreover, left ventricular peak subendo and subepi radial, circumferential, and longitudinal strain were lower in AMI T2+ segments than in infarct-like myocarditis T2+ segments and normal controls (p < 0.05); AMI LGE+ segments exhibited the lowest strain in three orientations compared to other subgroups (p < 0.05). CONCLUSION These findings prove that IVIM-DWI may be used as a reliable sequence for evaluation of different myocardial perfusion patterns in AMI and infarct-like myocarditis. AMI may exhibit lower myocardial perfusion status compared to infarct-like myocarditis due to different pathophysiological process.
Collapse
Affiliation(s)
- Dong-Aolei An
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dong Fang Road, Shanghai 200127, China
| | - Ruo-Yang Shi
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dong Fang Road, Shanghai 200127, China
| | - Rui Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dong Fang Road, Shanghai 200127, China
| | - Shiteng Suo
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dong Fang Road, Shanghai 200127, China
| | - Tong-Tong Han
- Circle Cardiovascular Imaging, 250, 815 8th Ave SW Calgary, AB T2P 3P2 Canada
| | - Jian-Rong Xu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dong Fang Road, Shanghai 200127, China
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lian-Ming Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dong Fang Road, Shanghai 200127, China.
| |
Collapse
|
8
|
Xiang SF, Zhang XQ, Yang SJ, Gao YY, Gao BL, Shi QL, Li S. Intravoxel Incoherent Motion Magnetic Resonance Imaging with Integrated Slice-specific Shimming for old myocardial infarction: A Pilot Study. Sci Rep 2019; 9:19766. [PMID: 31875029 PMCID: PMC6930276 DOI: 10.1038/s41598-019-56489-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/12/2019] [Indexed: 11/14/2022] Open
Abstract
Currently, little is known regarding the value of quantitative parameters derived from the intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) with integrated slice-specific shimming (iShim) sequence in detecting old myocardial infarction and myocardial fibrosis. This study was to investigate the value of IVIM-MRI with iShim sequence in diagnosing old myocardial infarction and fibrosis. Thirty-five patients with both old myocardial infarction and myocardial fibrosis and 12 healthy volunteers were prospectively enrolled to undergo cardiac diffusion-weighted imaging (DWI) using seven b-values (0, 20, 60, 80, 120, 200 and 600 s/mm2). The iShim sequence was used for IVIM data acquisition, and the diffusion parameters, D, D* and f values for IVIM, and conventional apparent diffusion coefficient (ADC) were evaluated on the anterior, posterior and lateral walls of the ventricular septum using the short axis of the heart. Significant differences were found in the D, D* and f values between healthy subjects and patients with old myocardial infarction and myocardial fibrosis (P = 0.000), with the median value of the D and f significantly smaller in the myocardial infarction and fibrosis than in the normal control but the median value of D* significantly greater in the myocardial infarction and fibrosis than in the normal control. In the receiver operating curve analysis, the areas under the curve were 0.939, 0.988 and 0.959 for the D, D* and f values, respectively. The sensitivities and specificities were 84.6% and 94.4% for D, 88.9% and 84.6% for D* and 100% and 93.1% for the f values, respectively. In conclusion, the IVIM-derived parameters (D, D* and f) obtained using the iShim DWI technique showed high capacity in diagnosing old myocardial infarction and myocardial fibrosis by providing diffusion and perfusion information, which may have great importance in future clinical practice.
Collapse
Affiliation(s)
- Shi-Feng Xiang
- Handan Central Hospital, 15 Southern Zhonghua Street, Handan City, Hebei Province, 056001, China
| | - Xue-Qiang Zhang
- Handan Central Hospital, 15 Southern Zhonghua Street, Handan City, Hebei Province, 056001, China.
| | - Su-Jun Yang
- Handan Central Hospital, 15 Southern Zhonghua Street, Handan City, Hebei Province, 056001, China
| | - Yun-Yun Gao
- Handan Central Hospital, 15 Southern Zhonghua Street, Handan City, Hebei Province, 056001, China
| | - Bu-Lang Gao
- Handan Central Hospital, 15 Southern Zhonghua Street, Handan City, Hebei Province, 056001, China
| | - Qing-Lei Shi
- Siemens medical system Co. Ltd., Beijing, 100176, China
| | - Shuai Li
- Siemens medical system Co. Ltd., Beijing, 100176, China
| |
Collapse
|
9
|
Minegishi S, Kato S, Takase-Minegishi K, Horita N, Azushima K, Wakui H, Ishigami T, Kosuge M, Kimura K, Tamura K. Native T1 time and extracellular volume fraction in differentiation of normal myocardium from non-ischemic dilated and hypertrophic cardiomyopathy myocardium: A systematic review and meta-analysis. IJC HEART & VASCULATURE 2019; 25:100422. [PMID: 31517037 PMCID: PMC6737306 DOI: 10.1016/j.ijcha.2019.100422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 09/02/2019] [Indexed: 11/02/2022]
Abstract
Background Both native T1 time and extracellular volume (ECV) fraction have been shown to be important measures for the detection of myocardial fibrosis. However, ECV determination requires the administration of an intravenous contrast agent, whereas native T1 mapping can be performed without a contrast agent. Methods Here, we conducted a meta-analysis of myocardial native T1 data obtained for non-ischemic cardiomyopathy (NIC) patients and controls. A literature review included studies that applied T1 mapping using modified Look-Locker inversion recovery to measure myocardial fibrosis, and the results were validated by comparing datasets for dilated cardiomyopathy (DCM) or hypertrophic cardiomyopathy (HCM) patients and healthy controls (HCs). Results We identified 16 eligible studies. Pooled mean differences (MDs) and 95% confidence intervals (CIs) were estimated as follows. Native T1 at 1.5-T, DCM vs. HC: MD = 45.26 (95% CI: 30.92-59.59); HCM vs. HC: MD = 47.09 (95% CI: 32.42-61.76). Native T1 at 3.0-T, DCM vs. HC: MD = 82.52 (95% CI: 47.60-117.44); HCM vs. HC: MD = 115.87 (95% CI: 50.71-181.04). ECV at 1.5-T, DCM vs. HC: MD = 4.26 (95% CI: 3.06-5.46); HCM vs. HC: MD = 1.49 (95% CI: -1.45-4.43). ECV at 3.0-T, DCM vs. HC: MD = 8.40 (95% CI: 2.94-13.86); HCM vs. HC: MD = 8.02 (95% CI: 5.45-1-0.59). Conclusion In conclusion, native T1 values were significantly different between NIC patients and controls. Native T1 mapping may be a useful noninvasive method to detect diffuse myocardial fibrosis in NIC patients.
Collapse
Key Words
- CI, confidence interval
- CMR, cardiac magnetic resonance
- DCM, dilated cardiomyopathy
- Dilated cardiomyopathy
- ECV, extracellular volume
- Extracellular volume fraction
- HC, healthy control
- HCM, hypertrophic cardiomyopathy
- Hypertrophic cardiomyopathy
- LGE-MRI, late gadolinium-enhanced magnetic resonance imaging
- MD, mean difference
- MINORS, Methodological Index for Non-Randomized Studies
- MOLLI, modified Look-Locker inversion recovery
- Meta-analysis
- NIC, non-ischemic cardiomyopathy
- Native T1 mapping
- SCD, sudden cardiac death
- SD, standard deviation
- Systematic review
Collapse
Affiliation(s)
- Shintaro Minegishi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shingo Kato
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | - Kaoru Takase-Minegishi
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuyuki Horita
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomoaki Ishigami
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masami Kosuge
- Department of Cardiology, Yokohama City University Medical Center, Yokohama, Japan
| | - Kazuo Kimura
- Department of Cardiology, Yokohama City University Medical Center, Yokohama, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
10
|
Wu CW, Wu R, Shi RY, An DA, Chen BH, Jiang M, Bacyinski A, Rahim A, Deen JM, Hu J, Han TT, Xu JR, Wu LM. Histogram Analysis of Native T 1 Mapping and Its Relationship to Left Ventricular Late Gadolinium Enhancement, Hypertrophy, and Segmental Myocardial Mechanics in Patients With Hypertrophic Cardiomyopathy. J Magn Reson Imaging 2018; 49:668-677. [PMID: 30142234 DOI: 10.1002/jmri.26272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The use of native T1 mapping for evaluation of hypertrophic cardiomyopathy (HCM) is being explored, and its combination with histogram analysis may benefit the accuracy of such assessments. PURPOSE To investigate the relationship of segmental left ventricular wall thickness (LVWT), myocardial fibrosis, and strain parameters with segmental histogram parameters of native T1 mapping in HCM patients. STUDY TYPE Retrospective. SUBJECTS Ninety-three HCM patients without previous cardiovascular diseases were included. FIELD STRENGTH/SEQUENCE 3.0T cardiac MR. Steady-state free precession cine imaging, modified Look-Locker inversion recovery, phase-sensitive inversion recovery. ASSESSMENT Images were assessed by three experienced radiologists. STATISTICAL TESTS Mann-Whitney U-tests, area under the curve (AUC), Spearman's rank correlation, intraclass correlation coefficient, and Bland-Altman test were used for statistical analysis. RESULTS A higher LVWT value correlated with higher means, minimums, 10th /25th /50th /75th /90th percentiles, maximums, kurtosis, entropy, and lower SD and energy of T1 mapping (P < 0.05 for all), with the correlation being stronger for entropy and energy (Spearman's rho = 0.439 and -0.413, respectively) than other parameters. Late gadolinium enhancement positive (LGE+) segments exhibited higher mean, minimum, 10th /25th /50th /75th /90th percentiles, maximum, entropy, and lower energy of T1 times than late gadolinium enhancement negative (LGE-) segments (P < 0.001 for all). Impaired strain function parameters (peak thickening and thickening rate in radial, circumferential, and longitudinal directions) demonstrated a weak correlation with higher entropy (P < 0.001 for all) and lower energy (P < 0.001 for all). DATA CONCLUSION Histogram parameters of native T1 mapping provide more information than mean T1 times alone. Among these parameters, entropy and energy may correlate better with LVWT, myocardial late gadolinium enhancement, and strain parameters than mean T1 times in HCM patients. LEVEL OF EVIDENCE 2 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019;49:668-677.
Collapse
Affiliation(s)
- Chong-Wen Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Rui Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ruo-Yang Shi
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Dong-Aolei An
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Bing-Hua Chen
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Meng Jiang
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Andrew Bacyinski
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ali Rahim
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - James M Deen
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jiani Hu
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tong-Tong Han
- Circle Cardiovascular Imaging, Calgary, Alberta, Canada
| | - Jian-Rong Xu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lian-Ming Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
11
|
Wu R, An DA, Shi RY, Chen BH, Jiang M, Bacyinski A, Han TT, Hu J, Xu JR, Wu LM. Myocardial fibrosis evaluated by diffusion-weighted imaging and its relationship to 3D contractile function in patients with hypertrophic cardiomyopathy. J Magn Reson Imaging 2018; 48:1139-1146. [PMID: 29601139 DOI: 10.1002/jmri.26016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 03/02/2018] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Previous studies have shown that diffusion-weighted imaging (DWI) is sensitive to myocardial fibrosis in ischemic and nonischemic cardiomyopathy. PURPOSE To explore the prognostic value of apparent diffusion coefficient (ADC) for detecting myocardial fibrosis and its relationship to the contractile function in hypertrophic cardiomyopathy (HCM). STUDY TYPE Prospective. POPULATION A total of 45 HCM patients and 20 controls. FIELD STRENGTH/SEQUENCE 3.0T cardiac MRI. The cardiac MR sequences included cine, T1 mapping, and DWI. ASSESSMENT According to the presence of late gadolinium enhancement (LGE) and the extracellular volume (ECV) values (+2 SD of control subjects), respectively, reader W and reader J assessed the value of ADC of each segment for detecting myocardial fibrosis and its relationship to impaired contractile function in HCM patients. STATISTICAL TESTS Independent sample t-test, Pearson analysis, and intraclass correlation (ICC). RESULTS The value of ECV was 23.6 ± 3.0% for control. ECV ≥ 29.6% and ECV < 29.6% groups were classified. ADC values in the ECV ≥ 29.6% group were significantly increased compared to the ECV < 29.6% group, (2.41 ± 0.23 μm2 /ms vs. 2.03 ± 0.16 μm2 /ms, P < 0.005). Compared to the LGE - group, ECV (32.1 ± 2.3% vs. 29.0 ± 2.8%, P < 0.005) and ADC (2.60 ± 0.18 μm2 /ms vs. 2.10 ± 0.07 μm2 /ms, P < 0.005) values were significantly increased in the LGE + group. ADC values were linearly associated with ECV values (R2 = 0.65) in HCM patients. ADC values were linearly associated with circumferential and longitudinal strain (R2 = 0.60, R2 = 0.46), as well as circumferential, longitudinal, and radial strain rate (R2 = 0.13, R2 = 0.25, R2 = 0.17, respectively). DATA CONCLUSION Contractile dysfunction in HCM is predominantly associated with ADC, which is a feasible alternative to ECV and LGE for detecting myocardial fibrosis. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:1139-1146.
Collapse
Affiliation(s)
- Rui Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Aolei An
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruo-Yang Shi
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing-Hua Chen
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Jiang
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Andrew Bacyinski
- Department of Physical Medicine and Rehabilitation, Detroit Medical Center, Detroit, Michigan, USA
| | - Tong-Tong Han
- Circle Cardiovascular Imaging Inc., Calgary, AB, Canada
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, Michigan, USA
| | - Jian-Rong Xu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lian-Ming Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
van den Boomen M, Slart RHJA, Hulleman EV, Dierckx RAJO, Velthuis BK, van der Harst P, Sosnovik DE, Borra RJH, Prakken NHJ. Native T 1 reference values for nonischemic cardiomyopathies and populations with increased cardiovascular risk: A systematic review and meta-analysis. J Magn Reson Imaging 2017; 47:891-912. [PMID: 29131444 PMCID: PMC5873388 DOI: 10.1002/jmri.25885] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/17/2017] [Indexed: 12/12/2022] Open
Abstract
Background Although cardiac MR and T1 mapping are increasingly used to diagnose diffuse fibrosis based cardiac diseases, studies reporting T1 values in healthy and diseased myocardium, particular in nonischemic cardiomyopathies (NICM) and populations with increased cardiovascular risk, seem contradictory. Purpose To determine the range of native myocardial T1 value ranges in patients with NICM and populations with increased cardiovascular risk. Study Type Systemic review and meta‐analysis. Population Patients with NICM, including hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM), and patients with myocarditis (MC), iron overload, amyloidosis, Fabry disease, and populations with hypertension (HT), diabetes mellitus (DM), and obesity. Field Strength/Sequence (Shortened) modified Look–Locker inversion‐recovery MR sequence at 1.5 or 3T. Assessment PubMed and Embase were searched following the PRISMA guidelines. Statistical Tests The summary of standard mean difference (SMD) between the diseased and a healthy control populations was generated using a random‐effects model in combination with meta‐regression analysis. Results The SMD for HCM, DCM, and MC patients were significantly increased (1.41, 1.48, and 1.96, respectively, P < 0.01) compared with healthy controls. The SMD for HT patients with and without left‐ventricle hypertrophy (LVH) together was significantly increased (0.19, P = 0.04), while for HT patients without LVH the SMD was zero (0.03, P = 0.52). The number of studies on amyloidosis, iron overload, Fabry disease, and HT patients with LVH did not meet the requirement to perform a meta‐analysis. However, most studies reported a significantly increased T1 for amyloidosis and HT patients with LVH and a significant decreased T1 for iron overload and Fabry disease patients. Data Conclusions Native T1 mapping by using an (Sh)MOLLI sequence can potentially assess myocardial changes in HCM, DCM, MC, iron overload, amyloidosis, and Fabry disease compared to controls. In addition, it can help to diagnose left‐ventricular remodeling in HT patients. Level of Evidence: 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:891–912.
Collapse
Affiliation(s)
- Maaike van den Boomen
- Department of Radiology, University of Groningen, University Medical Center Groningen, the Netherlands; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard-MIT Health Science and Technology, USA
| | - Riemer H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, the Netherlands; Department of Biomedical Photonic Imaging, University of Twente, the Netherlands
| | - Enzo V Hulleman
- Department of Radiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Birgitta K Velthuis
- Department of Radiology, University of Utrecht, University Medical Center Utrecht, the Netherlands
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - David E Sosnovik
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard-MIT Health Science and Technology, USA
| | - Ronald J H Borra
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Netherlands; Medical Imaging Centre of Southwest Finland, Turku University Hospital, Finland
| | - Niek H J Prakken
- Department of Radiology, University of Groningen, University Medical Center Groningen, the Netherlands
| |
Collapse
|
13
|
Wu R, An DA, Hu J, Jiang M, Guo Q, Xu JR, Wu LM. The apparent diffusion coefficient is strongly correlated with extracellular volume, a measure of myocardial fibrosis, and subclinical cardiomyopathy in patients with systemic lupus erythematosus. Acta Radiol 2017; 59:287-295. [DOI: 10.1177/0284185117717763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Extracellular volume (ECV) has been histologically validated as a non-invasive quantitative index of myocardial fibrosis that does not require the use of contrast, which is contraindicated in patients with renal insufficiency. Purpose To evaluate the correlation between the contrast-free apparent diffusion coefficient (ADC) and ECV, an index of fibrosis. Material and Methods Twenty-four patients with systemic lupus erythematosus (SLE), who were predominantly women (mean age = 36 ± 12 years) and 12 normal participants (mean age = 38 ± 10 years) underwent cardiac magnetic resonance (CMR) via 3.0 T MR with T1 mapping. Diffusion-weighted imaging (DWI) and late gadolinium-enhanced (LGE) imaging served as the reference standards with which CMR was compared. The mean ADC, native T1, and ECV were calculated for each patient, and the correlations among these parameters were analyzed. Results Both SLE LGE-positive (LGE+) and SLE LGE-negative (LGE–) participants had higher native T1 values, ECV, and ADC than normal controls ( P < 0.05). SLE LGE+ participants exhibited a higher ECV (0.31 ± 0.02) and ADC (2.44 ± 0.32 × 10−3 mm2/s) than SLE LGE– participants ( p < 0.05); however, SLE LGE+ and SLE LGE– participants had similar native T1 values (1227 ± 48.81 ms versus 1174.70 ± 95.80 ms, respectively; P > 0.05). ADC values were positively correlated with increased ECV (R2 = 0.62) and native T1 values (R2 = 0.28) in all participants. Conclusion ADC measurements are a suitable alternative to ECV that may be used to assess and quantify myocardial fibrosis in patients with SLE.
Collapse
Affiliation(s)
- Rui Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Dong-Aolei An
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Meng Jiang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Qiang Guo
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jian-Rong Xu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lian-Ming Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
14
|
Reiber JHC, De Sutter J, Schoenhagen P, Stillman AE, Vande Veire NRL. Cardiovascular imaging 2016 in the International Journal of Cardiovascular Imaging. Int J Cardiovasc Imaging 2017; 33:761-770. [PMID: 28315986 PMCID: PMC5406479 DOI: 10.1007/s10554-017-1111-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Johan H C Reiber
- Department of Radiology, Division of Image Processing, Leiden University Medical Center, Leiden, The Netherlands.
| | - Johan De Sutter
- Department of Cardiology, AZ Maria Middelares Gent and University Gent, Ghent, Belgium
| | - Paul Schoenhagen
- Department of Radiology, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Arthur E Stillman
- Department of Radiology, Emory University Hospital, Atlanta, GA, USA
| | - Nico R L Vande Veire
- Department of Cardiology, AZ Maria Middelares Gent and Free University Brussels, Brussels, Belgium
| |
Collapse
|