1
|
Yue JY, Li PC, Li MX, Wu QW, Liang CH, Chen J, Zhu ZP, Li PH, Dou WG, Gao JB. An Exploratory Pilot Study on the Application of Radiofrequency Ablation for Atrial Fibrillation Guided by Computed Tomography-Based 3D Printing Technology. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2025-2037. [PMID: 38491235 PMCID: PMC11522232 DOI: 10.1007/s10278-024-01081-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Radiofrequency ablation (RFA) is the treatment of choice for atrial fibrillation (AF). Additionally, the utilization of 3D printing for cardiac models offers an in-depth insight into cardiac anatomy and cardiovascular diseases. The study aims to evaluate the clinical utility and outcomes of RFA following in vitro visualization of the left atrium (LA) and pulmonary vein (PV) structures via 3D printing (3DP). Between November 2017 and April 2021, patients who underwent RFA at the First Affiliated Hospital of Xinxiang Medical University were consecutively enrolled and randomly allocated into two groups: the 3DP group and the control group, in a 1:1 ratio. Computed tomography angiography (CTA) was employed to capture the morphology and diameter of the LA and PV, which facilitated the construction of a 3D entity model. Additionally, surgical procedures were simulated using the 3D model. Parameters such as the duration of the procedure, complications, and rates of RFA recurrence were meticulously documented. Statistical analysis was performed using the t-test or Mann-Whitney U test to evaluate the differences between the groups, with a P-value of less than 0.05 considered statistically significant. In this study, a total of 122 patients were included, with 53 allocated to the 3DP group and 69 to the control group. The analysis of the morphological measurements of the LA and PV taken from the workstation or direct entity measurement showed no significant difference between the two groups (P > 0.05). However, patients in the 3DP group experienced significantly shorter RFA times (97.03 ± 28.39 compared to 120.51 ± 44.76 min, t = 3.05, P = 0.003), reduced duration of radiation exposure (2.55 [interquartile range 2.01, 3.24] versus 3.20 [2.28, 3.91] min, Z = 3.23, P < 0.001), and shorter modeling times (7.68 ± 1.03 compared to 8.89 ± 1.45 min, t = 5.38, P < 0.001). 3DP technology has the potential to enhance standard RFA practices by reducing the time required for intraoperative interventions and exposure to radiation.
Collapse
Affiliation(s)
- Jun-Yan Yue
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Erqi District, No. 1 Jianshe East Road, Zhengzhou, 450000, Henan, China
- Department of Radiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
- Heart Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
- Medical Imaging School of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Pei-Cheng Li
- Electrophysiology Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Mei-Xia Li
- Department of Radiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Qing-Wu Wu
- Department of Radiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Chang-Hua Liang
- Department of Radiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Jie Chen
- Department of Radiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Zhi-Ping Zhu
- Department of Radiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Pei-Heng Li
- Department of Radiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Wen-Guang Dou
- Department of Radiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Jian-Bo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Erqi District, No. 1 Jianshe East Road, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
2
|
Gonzalez-Urquijo M, Hosseinzadeh E, Aguirre-Soto A, Fabiani MA. Stereolithographic (SLA) 3D Printing for Preprocedural Planning in Endovascular Aortic Repair of a Thoracic Aneurysm. Vasc Endovascular Surg 2024; 58:343-349. [PMID: 37944002 DOI: 10.1177/15385744231215560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
BACKGROUND When treating aortic aneurysm patients with complex anatomical features, preprocedural planning aided by 3D-printed models offers valuable insights for endovascular intervention. This study highlights the use of stereolithographic (SLA) 3D printing to fabricate a phantom of a challenging aortic arch aneurysm with a complex neck anatomy. CLINICAL CASE A 75-year-old female presented with a 58 mm descending thoracic aortic aneurysm (TAA) extending to the distal arch, involving the left subclavian artery (LSA) and the left common carotid artery (LCCA). The computed tomography (CT) scans underwent scrutiny by radiology and vascular teams. Nevertheless, the precise spatial relationships of the ostial origins proved to be challenging to ascertain. To address this, a patient-specific phantom of the aortic arch was fabricated utilizing an SLA printer and a biomedical resin. The thoracic endovascular aortic repair (TEVAR) procedure was simulated using fluoroscopy on the phantom to enhance procedural preparedness. Subsequently, the patient underwent a right carotid-left carotid bypass and a right carotid-left subclavian bypass. After a 24-hour interval, the patient underwent the TEVAR procedure, during which a 37 mm × 150 mm stent graft (CTAG, WL Gore and Associates, Flagstaff, AZ, USA) and a 40 mm × 200 mm stent graft (CTAG, WL Gore and Associates, Flagstaff, AZ, USA) were deployed, effectively covering the LSA and LCCA. Notably, the aneurysm exhibited complete sealing, with no indications of endoleaks or graft infoldings. At the 12-month follow-up, the patient remains in good health, with no evidence of endoleaks or any other surgery-related complication. CONCLUSION This report showcases the successful use of a 3D-printed endovascular phantom in guiding the decision-making process during the preparation for a TEVAR procedure. The simulation played a pivotal role in selecting the appropriate stent graft, ensuring an intervention protocol optimized based on the patient-specific anatomy.
Collapse
Affiliation(s)
| | - Elnaz Hosseinzadeh
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Alan Aguirre-Soto
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | | |
Collapse
|
3
|
Valvez S, Oliveira-Santos M, Gonçalves L, Amaro AM, Piedade AP. Preprocedural Planning of Left Atrial Appendage Occlusion: A Review of the Use of Additive Manufacturing. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:333-346. [PMID: 38389681 PMCID: PMC10880654 DOI: 10.1089/3dp.2022.0373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Stroke is a significant public health problem, with non-valvular atrial fibrillation (NVAF) being one of its main causes. This cardiovascular arrhythmia predisposes to the production of intracardiac thrombi, mostly formed in the left atrial appendage (LAA). When there are contraindications to treatment with oral anticoagulants, another therapeutic option to reduce the possibility of thrombus formation in the LAA is the implantation of an occlusion device by cardiac catheterization. The effectiveness of LAA occlusion is dependent on accurate preprocedural device sizing and proper device positioning at the LAA ostium, to ensure sufficient device anchoring and avoid peri-device leaks. Additive manufacturing, commonly known as three-dimensional printing (3DP), of LAA models is beginning to emerge in the scientific literature to address these challenges through procedural simulation. This review aims at clarifying the impact of 3DP on preprocedural planning of LAA occlusion, specifically in the training of cardiac surgeons and in the assessment of the perfect adjustment between the LAA and the biomedical implant.
Collapse
Affiliation(s)
- Sara Valvez
- Department of Mechanical Engineering, CEMMPRE, ARISE, University of Coimbra, Coimbra, Portugal
| | | | - Lino Gonçalves
- CBR, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana M. Amaro
- Department of Mechanical Engineering, CEMMPRE, ARISE, University of Coimbra, Coimbra, Portugal
| | - Ana P. Piedade
- Department of Mechanical Engineering, CEMMPRE, ARISE, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Bertsche D, Pfisterer M, Dahme T, Schneider LM, Metze P, Vernikouskaya I, Rasche V. MRI-based training model for left atrial appendage closure. Int J Comput Assist Radiol Surg 2023; 18:2111-2116. [PMID: 36997829 PMCID: PMC10589139 DOI: 10.1007/s11548-023-02870-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/09/2023] [Indexed: 04/01/2023]
Abstract
PURPOSE Percutaneous closure of the left atrial appendage (LAA) reduces the risk of embolic stroke in patients with atrial fibrillation. Thereby, the optimal transseptal puncture (TSP) site differs due to the highly variable anatomical shape of the LAA, which is rarely considered in existing training models. Based on non-contrast-enhanced magnetic resonance imaging (MRI) volumes, we propose a training model for LAA closure with interchangeable and patient-specific LAA enabling LAA-specific identification of the TSP site best suited. METHODS Based on patient-specific MRI data, silicone models of the LAAs were produced using a 3D-printed cast model. In addition, an MRI-derived 3D-printed base model was set up, including the right and left atrium with predefined passages in the septum, mimicking multiple TSP sites. The various silicone models and a tube mimicking venous access were connected to the base model. Empirical use of the model allowed the demonstration of its usability. RESULTS Patient-specific silicone models of the LAA could be generated from all LAA patient MRI datasets. The influence of various combinations regarding TSP sites and LAA shapes could be demonstrated as well as the technical functionality of the occluder system. Via the attached tube mimicking the venous access, the correct handling of the deployment catheter even in case of not optimal puncture site could be practiced. CONCLUSION The proposed contrast-agent and radiation-free MRI-based training model for percutaneous LAA closure enables the pre-interventional assessment of the influence of the TSP site on the access of patient-specific LAA shapes. A straightforward replication of this work is measured by using clinically available imaging protocols and a widespread 3D printer technique to build the model.
Collapse
Affiliation(s)
- Dagmar Bertsche
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Mona Pfisterer
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Tillman Dahme
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | | | - Patrick Metze
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Ina Vernikouskaya
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Volker Rasche
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
5
|
Mendez K, Kennedy DG, Wang DD, O’Neill B, Roche ET. Left Atrial Appendage Occlusion: Current Stroke Prevention Strategies and a Shift Toward Data-Driven, Patient-Specific Approaches. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2022; 1:100405. [PMID: 39131471 PMCID: PMC11308563 DOI: 10.1016/j.jscai.2022.100405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 08/13/2024]
Abstract
The left atrial appendage (LAA) is a complex structure with unknown physiologic function protruding from the main body of the left atrium. In patients with atrial fibrillation, the left atrium does not contract effectively. Insufficient atrial and LAA contractility predisposes the LAA morphology to hemostasis and thrombus formation, leading to an increased risk of cardioembolic events. Oral anticoagulation therapies are the mainstay of stroke prevention options for patients; however, not all patients are candidates for long-term oral anticoagulation. Percutaneous occlusion devices are an attractive alternative to long-term anticoagulation therapy, although they are not without limitations, such as peri-implant leakage and device-related thrombosis. Although efforts have been made to reduce these risks, significant interpatient heterogeneity inevitably yields some degree of device-anatomy mismatch that is difficult to resolve using current devices and can ultimately lead to insufficient occlusion and poor patient outcomes. In this state-of-the-art review, we evaluated the anatomy of the LAA as well as the current pathophysiologic understanding and stroke prevention strategies used in the management of the risk of stroke associated with atrial fibrillation. We highlighted recent advances in computed tomography imaging, preprocedural planning, computational modeling, and novel additive manufacturing techniques, which represent the tools needed for a paradigm shift toward patient-centric LAA occlusion. Together, we envisage that these techniques will facilitate a pipeline from the imaging of patient anatomy to patient-specific computational and bench-top models that enable customized, data-driven approaches for LAA occlusion that are engineered specifically to meet each patient's unique needs.
Collapse
Affiliation(s)
- Keegan Mendez
- Harvard/MIT Health Sciences and Technology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Darragh G. Kennedy
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biomedical Engineering, Columbia University, New York, New York
| | | | | | - Ellen T. Roche
- Harvard/MIT Health Sciences and Technology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
6
|
3D Printing of Tooth Impressions Based on Multi-Detector Computed Tomography Images Combined with Beam Hardening Artifact Reduction in Metal Structures. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We investigated the role of metal artifact reduction by taking 3D print impressions using 3D data of Computed Tomography (CT) images based on the algorithm applied. We manufactured a phantom of a human mandible tooth made of gypsum and nickel alloy to measure the metal artifacts. CT images were obtained by changing the phantom tube voltage and tube current. The signal intensity of the image generated by the metal artifacts before and after the iterative metal artifact reduction algorithm (iMAR) was measured. A 3D printing process was performed after converting the images, before and after iMAR application, into STL files using InVesalius version 3.1.1 by selecting the conditions that minimized the effect of the artifact. Regarding metal artifacts, the Hounsfield unit (HU) value showed low as the tube voltage increased. The iMAR-applied images acquired under the same conditions showed a significantly lower HU. The artifacts, in the form of flashes, persisted in the 3D-printed product of the image not subjected to iMAR, but were largely removed in the 3D-printed product following iMAR application. In this study, the application of iMAR and data acquired using high tube voltage eliminated a significant portion of the metal artifacts, resulting in an impression shape that was consistent with the human body.
Collapse
|
7
|
Cimmino G, Loffredo FS, Gallinoro E, Prozzo D, Fabiani D, Cante L, Salerno G, Cappelli Bigazzi M, Golino P. Percutaneous Left Atrial Appendage Occlusion: An Emerging Option in Patients with Atrial Fibrillation at High Risk of Bleeding. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:444. [PMID: 34063719 PMCID: PMC8147783 DOI: 10.3390/medicina57050444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/31/2022]
Abstract
Atrial fibrillation (AF) is a common cardiac arrhythmia with an estimated prevalence of 1% in the general population. It is associated with an increased risk of ischemic stroke, silent cerebral ischemia, and cognitive impairment. Due to the blood flow stasis and morphology, thrombus formation occurs mainly in the left atrial appendage (LAA), particularly in the setting of nonvalvular AF (NVAF). Previous studies have shown that >90% of emboli related to NVAF originate from the LAA, thus prevention of systemic cardioembolism is indicated. According to the current guidelines, anticoagulant therapy with direct oral anticoagulants (DOACs) or vitamin K antagonists (VKAs), represents the standard of care in AF patients, in order to prevent ischemic stroke and peripheral embolization. Although these drugs are widely used and DOACs have shown, compared to VKAs, non-inferiority for stroke prevention with significantly fewer bleeding complications, some issues remain a matter of debate, including contraindications, side effects, and adherence. An increasing number of patients, indeed, because of high bleeding risk or after experiencing life-threatening bleedings, must take anticoagulants with extreme caution if not contraindicated. While surgical closure or exclusion of LAA has been historically used in patients with AF with contradictory results, in the recent years, a novel procedure has emerged to prevent the cardioembolic stroke in these patients: The percutaneous left atrial appendage occlusion (LAAO). Different devices have been developed in recent years, though not all of them are approved in Europe and some are still under clinical investigation. Currently available devices have shown a significant decrease in bleeding risk while maintaining efficacy in preventing thromboembolism. The procedure can be performed percutaneously through the femoral vein access, under general anesthesia. A transseptal puncture is required to access left atrium and is guided by transesophageal echocardiography (TEE). Evidence from the current literature indicates that percutaneous LAAO represents a safe alternative for those patients with contraindications for long-term oral anticoagulation. This review summarizes scientific evidences regarding LAAO for stroke prevention including clinical indications and an adequate patient selection.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (G.C.); (E.G.); (D.P.); (D.F.); (L.C.); (P.G.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy; (G.S.); (M.C.B.)
| | - Francesco S. Loffredo
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (G.C.); (E.G.); (D.P.); (D.F.); (L.C.); (P.G.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy; (G.S.); (M.C.B.)
- Molecular Cardiology, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Emanuele Gallinoro
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (G.C.); (E.G.); (D.P.); (D.F.); (L.C.); (P.G.)
- Cardiovascular Center Aalst, OLV Clinic, 9300 Aalst, Belgium
| | - Dario Prozzo
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (G.C.); (E.G.); (D.P.); (D.F.); (L.C.); (P.G.)
| | - Dario Fabiani
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (G.C.); (E.G.); (D.P.); (D.F.); (L.C.); (P.G.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy; (G.S.); (M.C.B.)
| | - Luigi Cante
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (G.C.); (E.G.); (D.P.); (D.F.); (L.C.); (P.G.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy; (G.S.); (M.C.B.)
| | - Gemma Salerno
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy; (G.S.); (M.C.B.)
| | | | - Paolo Golino
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (G.C.); (E.G.); (D.P.); (D.F.); (L.C.); (P.G.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy; (G.S.); (M.C.B.)
| |
Collapse
|
8
|
Croix GS, Zaidi SI, Loescher VS, Mihos CG. Computed Tomography-Derived Three-Dimensional Printed Models versus Two-Dimensional Transesophageal Echocardiography for Left Atrial Appendage Occlusion Device Planning: A Systematic Review and Meta-Analysis. J Atr Fibrillation 2020; 13:2433. [PMID: 34950324 PMCID: PMC8691300 DOI: 10.4022/jafib.2433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVE This systematic review and meta-analysis compared computed tomography (CT)-derived three-dimensional (3D) modeling versus two-dimensional transesophageal echocardiography (TEE) for left atrial appendage occluder (LAAO) device planning. BACKGROUND LAAO device planning is commonly performed with TEE. However, procedures often require multiple devices and deployments due to inaccurate sizing from TEE. The use of CT three-dimensional (3D) models for LAAO device planning may improve accuracy. METHODS Four clinical studies that reported procedural and clinical outcomes for CT-derived 3D modeling versus TEE for LAAO device planning were identified. End points were accurate device sizing, procedure failure, number of devices used per procedure, fluoroscopy time, and post-procedure leak. Risk ratio (RR) and mean difference (MD) with a 95% confidence interval (CI) were calculated by the Mantel-Haenszel and inverse variance methods. RESULTS A total of 166 participants were included. When compared with conventional imaging, the use of 3D printed models was associated with less fluoroscopy time (MD -6.98 minutes, 95% CI -12.68 to -1.28, p=0.02) and lower risk of occluder device peri-prosthetic leak (RR 0.23, 95% CI 0.07-0.73, p=0.01) for LAAO. There were signals towards lower number of devices per procedure (MD -0.56 devices, 95% CI -1.16-0.05, p=0.07) and less total procedure time (MD -13.50 minutes, 95% CI -28.14-1.14, p=0.07) with printed modeling for LAAO. There was no difference between modalities in rates of procedure failure. CONCLUSIONS CT-derived 3D printed models for LAAO device planning may offer the advantages of lower LAAO device peri-prosthetic leak and less fluoroscopy time when compared with conventional TEE guidance.
Collapse
Affiliation(s)
- Garly Saint Croix
- Columbia University Division of Cardiology, Mount Sinai Heart Institute, Miami Beach, FL
| | - Syed Imran Zaidi
- Columbia University Division of Cardiology, Mount Sinai Heart Institute, Miami Beach, FL
| | - Viky S Loescher
- Department of Radiology, Cardiothoracic & Vascular Imaging, Mount Sinai Medical Center, Miami Beach, FL
| | - Christos G Mihos
- Columbia University Division of Cardiology, Mount Sinai Heart Institute, Miami Beach, FL
- Echocardiography Laboratory, Columbia University Division of Cardiology, Mount Sinai Heart Institute, Miami Beach, FL
| |
Collapse
|
9
|
Ali A, Ballard DH, Althobaity W, Christensen A, Geritano M, Ho M, Liacouras P, Matsumoto J, Morris J, Ryan J, Shorti R, Wake N, Rybicki FJ, Sheikh A. Clinical situations for which 3D printing is considered an appropriate representation or extension of data contained in a medical imaging examination: adult cardiac conditions. 3D Print Med 2020; 6:24. [PMID: 32965536 PMCID: PMC7510265 DOI: 10.1186/s41205-020-00078-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Medical 3D printing as a component of care for adults with cardiovascular diseases has expanded dramatically. A writing group composed of the Radiological Society of North America (RSNA) Special Interest Group on 3D Printing (SIG) provides appropriateness criteria for adult cardiac 3D printing indications. METHODS A structured literature search was conducted to identify all relevant articles using 3D printing technology associated with a number of adult cardiac indications, physiologic, and pathologic processes. Each study was vetted by the authors and graded according to published guidelines. RESULTS Evidence-based appropriateness guidelines are provided for the following areas in adult cardiac care; cardiac fundamentals, perioperative and intraoperative care, coronary disease and ischemic heart disease, complications of myocardial infarction, valve disease, cardiac arrhythmias, cardiac neoplasm, cardiac transplant and mechanical circulatory support, heart failure, preventative cardiology, cardiac and pericardial disease and cardiac trauma. CONCLUSIONS Adoption of common clinical standards regarding appropriate use, information and material management, and quality control are needed to ensure the greatest possible clinical benefit from 3D printing. This consensus guideline document, created by the members of the RSNA 3D printing Special Interest Group, will provide a reference for clinical standards of 3D printing for adult cardiac indications.
Collapse
Affiliation(s)
- Arafat Ali
- Department of Radiology, University of Cincinnati Medical Center, Cincinnati, OH, USA.
| | - David H Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Waleed Althobaity
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Andy Christensen
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | | - Michelle Ho
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Peter Liacouras
- 3D Medical Applications Center, Walter Reed National Military Medical Center, Washington, DC, USA
| | - Jane Matsumoto
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Justin Ryan
- Rady Children's Hospital, San Diego, CA, USA
| | - Rami Shorti
- Intermountain Healthcare, South Jordan, UT, USA
| | - Nicole Wake
- Department of Radiology, Montefiore Medical Center, Bronx, NY, USA
| | - Frank J Rybicki
- Department of Radiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Adnan Sheikh
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
10
|
Ballard DH, Mills P, Duszak R, Weisman JA, Rybicki FJ, Woodard PK. Medical 3D Printing Cost-Savings in Orthopedic and Maxillofacial Surgery: Cost Analysis of Operating Room Time Saved with 3D Printed Anatomic Models and Surgical Guides. Acad Radiol 2020; 27:1103-1113. [PMID: 31542197 DOI: 10.1016/j.acra.2019.08.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022]
Abstract
RATIONALE AND OBJECTIVE Three-dimensional (3D) printed anatomic models and surgical guides have been shown to reduce operative time. The purpose of this study was to generate an economic analysis of the cost-saving potential of 3D printed anatomic models and surgical guides in orthopedic and maxillofacial surgical applications. MATERIALS AND METHODS A targeted literature search identified operating room cost-per-minute and studies that quantified time saved using 3D printed constructs. Studies that reported operative time differences due to 3D printed anatomic models or surgical guides were reviewed and cataloged. A mean of $62 per operating room minute (range of $22-$133 per minute) was used as the reference standard for operating room time cost. Different financial scenarios were modeled with the provided cost-per-minute of operating room time (using high, mean, and low values) and mean time saved using 3D printed constructs. RESULTS Seven studies using 3D printed anatomic models in surgical care demonstrated a mean 62 minutes ($3720/case saved from reduced time) of time saved, and 25 studies of 3D printed surgical guides demonstrated a mean 23 minutes time saved ($1488/case saved from reduced time). An estimated 63 models or guides per year (or 1.2/week) were predicted to be the minimum number to breakeven and account for annual fixed costs. CONCLUSION Based on the literature-based financial analyses, medical 3D printing appears to reduce operating room costs secondary to shortening procedure times. While resource-intensive, 3D printed constructs used in patients' operative care provides considerable downstream value to health systems.
Collapse
Affiliation(s)
- David H Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, Campus Box 8131, St. Louis, MO 63110.
| | | | - Richard Duszak
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Jeffery A Weisman
- University of Illinois at Chicago Occupational Medicine, Chicago, Illinois
| | - Frank J Rybicki
- Department of Radiology, University of Cincinnati, Cincinnati, Ohio
| | - Pamela K Woodard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, Campus Box 8131, St. Louis, MO 63110
| |
Collapse
|
11
|
Vukicevic M, Filippini S, Little SH. Patient-Specific Modeling for Structural Heart Intervention: Role of 3D Printing Today and Tomorrow CME. Methodist Debakey Cardiovasc J 2020; 16:130-137. [PMID: 32670473 DOI: 10.14797/mdcj-16-2-130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Structural heart interventions (SHIs) are increasingly applicable in a wide range of heart defects, but the intricate and dynamic nature of cardiac structures can make SHIs challenging to perform. Three-dimensional (3D) printed modeling integrates advanced clinical imaging and 3D printing technology to replicate patient-specific anatomy for comprehensive planning and simulation of SHIs. This review discusses the basic principles of patient-specific 3D print model development, print material selection, and model fabrication and highlights how cardiovascular 3D printing can be used in preprocedural planning, device sizing, enhanced communication, and procedure simulation.
Collapse
Affiliation(s)
- Marija Vukicevic
- HOUSTON METHODIST DEBAKEY HEART & VASCULAR CENTER, HOUSTON METHODIST HOSPITAL, HOUSTON, TEXAS
| | - Stefano Filippini
- HOUSTON METHODIST DEBAKEY HEART & VASCULAR CENTER, HOUSTON METHODIST HOSPITAL, HOUSTON, TEXAS
| | - Stephen H Little
- HOUSTON METHODIST DEBAKEY HEART & VASCULAR CENTER, HOUSTON METHODIST HOSPITAL, HOUSTON, TEXAS
| |
Collapse
|
12
|
Tan C, Wang DD, Reisman M, Saw J. Cardiac CT and Structural Heart Disease Interventions (Non-TAVI). CURRENT CARDIOVASCULAR IMAGING REPORTS 2019. [DOI: 10.1007/s12410-019-9516-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Fan Y, Wong RHL, Lee APW. Three-dimensional printing in structural heart disease and intervention. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:579. [PMID: 31807560 DOI: 10.21037/atm.2019.09.73] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three-dimensional (3D) printing refers to the process by which physical objects are built by depositing materials in layers based on a specific digital design. It was initially used in manufacture industry. Inspired by the technology, clinicians have recently attempted to integrate 3D printing into medical applications. One of the medical specialties that has recently made such attempt is cardiology, especially in the field of structural heart disease (SHD). SHD refers to a group of non-coronary cardiovascular disorders and related interventions. Obvious examples are aortic stenosis, mitral regurgitation, atrial septal defect, and known or potential left atrial appendage (LAA) clots. In the last decade, cardiologists have witnessed a dramatic increase in the types and complexity of catheter-based interventions for SHD. Current imaging modalities have important limitations in accurate delineation of cardiac anatomies necessary for SHD interventions. Application of 3D printing in SHD interventional planning enables tangible appreciation of cardiac anatomy and allows in vitro interventional device testing. 3D printing is used in diagnostic workup, guidance of treatment strategies, and procedural simulation, facilitating hemodynamic research, enhancing interventional training, and promoting patient-clinician communication. In this review, we attempt to define the concept, technique, and work flow of 3D printing in SHD and its interventions, highlighting the reported clinical benefits and unsolved issues, as well as exploring future developments in this field.
Collapse
Affiliation(s)
- Yiting Fan
- Division of Cardiology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Randolph H L Wong
- Division of Cardiothoracic Surgery, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Alex Pui-Wai Lee
- Division of Cardiology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Reiber JHC, Pereira GTR, Bezerra HG, De Sutter J, Schoenhagen P, Stillman AE, Van de Veire NRL. Cardiovascular imaging 2018 in the International Journal of Cardiovascular Imaging. Int J Cardiovasc Imaging 2019; 35:1175-1188. [DOI: 10.1007/s10554-019-01579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Jia D, Zhou Q, Song HN, Zhang L, Chen JL, Liu Y, Kong B, He FZ, Wang YJ, Yang YT. The value of the left atrial appendage orifice perimeter of 3D model based on 3D TEE data in the choice of device size of LAmbre™ occluder. Int J Cardiovasc Imaging 2019; 35:1841-1851. [PMID: 31134413 DOI: 10.1007/s10554-019-01627-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/13/2019] [Indexed: 11/28/2022]
Abstract
Preoperative optimal selection of the occluder size is crucial in percutaneous left atrial appendage (LAA) occlusion, and the maximal width of the LAA orifice is the main reference index, however it can not fully meet the practical operation requirements. We retrospectively analyzed three-dimensional (3D) transesophageal echocardiography (TEE) and computed tomography (CT) imaging dataset of the 41 patients who underwent LAA occlusion with LAmbre™ system. The LAA orifice parameters were overall evaluated to determine their role in device size selection. Eight LAA 3D models of the four cases who had been replaced their device during the procedure based on TEE and CT were printed out to verify the optimal parameter decision strategy. There was a significant concordance of the results between 3D TEE and CT in the LAA orifice evaluation. The correlations between the perimeter and maximal width measurements by 3D TEE and the closure disk of the device were stronger than that between the area measurements and the closure disk (r = 0.93, 0.95, 0.86, respectively and p < 0.001 all), and the result was similar to that by CT (r = 0.92, 0.93, 0.84, respectively and p < 0.001 all). The ratios of the maximal width to the minimal width of the four cases were all > 1.4, however the rest 37 cases were all ≤ 1.4. Based on the comprehensive assessment of the LAA orifice perimeter and maximal width of the 3D printed models, the experiments were all succeed just for one try. The LAA orifice perimeter of 3D printed model based on 3D TEE may help in choosing the optimal device size of LAmbre™, especially for the LAA with flater ostial shape.
Collapse
Affiliation(s)
- Dan Jia
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Hong-Ning Song
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lan Zhang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jin-Ling Chen
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fa-Zhi He
- Computer Science and Technology School, Wuhan University, Wuhan, China
| | - Yi-Jia Wang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan-Ting Yang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|