1
|
Kashyap P, Dutt N, Ahirwar DK, Yadav P. Lung Microbiome in Lung Cancer: A New Horizon in Cancer Study. Cancer Prev Res (Phila) 2024; 17:401-414. [PMID: 38787628 DOI: 10.1158/1940-6207.capr-24-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Lung cancer is the second most prevalent cancer worldwide and a leading cause of cancer-related deaths. Recent technological advancements have revealed that the lung microbiome, previously thought to be sterile, is host to various microorganisms. The association between the lung microbiome and lung cancer initiation, progression, and metastasis is complex and contradictory. However, disruption in the homeostasis of microbiome compositions correlated with the increased risk of lung cancer. This review summarizes current knowledge about the most recent developments and trends in lung cancer-related microbiota or microbial components. This article aims to provide information on this rapidly evolving field while giving context to the general role of the lung microbiome in lung cancer. In addition, this review briefly discussed the causative association of lung microbiome with lung cancer. We will review the mechanisms by which lung microbiota influence carcinogenesis, focusing on microbiota dysbiosis. Moreover, we will also discuss the host-microbiome interaction as it plays a crucial role in stimulating and regulating the immune response. Finally, we will provide information on the diagnostic role of the microbiome in lung cancer. This article aims to offer an overview of the lung microbiome as a predictive and diagnostic biomarker in lung cancer.
Collapse
Affiliation(s)
- Pragya Kashyap
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, India
| | - Naveen Dutt
- Department of Pulmonary Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Dinesh K Ahirwar
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, India
- Interdesciplinary Research Platform-Smart Healthcare, Indian Institute of Technology Jodhpur, India
| | - Pankaj Yadav
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, India
- School of Artificial Intelligence and Data Science, Indian Institute of Technology Jodhpur, India
| |
Collapse
|
2
|
Liu W, Xu J, Pi Z, Chen Y, Jiang G, Wan Y, Mao W. Untangling the web of intratumor microbiota in lung cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:189025. [PMID: 37980944 DOI: 10.1016/j.bbcan.2023.189025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Microbes are pivotal in contemporary cancer research, influencing various biological behaviors in cancer. The previous notion that the lung was sterile has been destabilized by the discovery of microbiota in the lower airway and lung, even within tumor tissues. Advances of biotechnology enable the association between intratumor microbiota and lung cancer to be revealed. Nonetheless, the origin and tumorigenicity of intratumor microbiota in lung cancer still remain implicit. Additionally, accumulating evidence indicates that intratumor microbiota might serve as an emerging biomarker for cancer diagnosis, prognosis, and even a therapeutic target across multiple cancer types, including lung cancer. However, research on intratumor microbiota's role in lung cancer is still nascent and warrants more profound exploration. Herein, this paper provides an extensive review of recent advancements in the following fields, including 1) established and emerging biotechnologies utilized to study intratumor microbiota in lung cancer, 2) causation between intratumor microbiota and lung cancer from the perspectives of translocation, cancerogenesis and metastasis, 3) potential application of intratumor microbiota as a novel biomarker for lung cancer diagnosis and prognosis, and 4) promising lung cancer therapies via regulating intratumor microbiota. Moreover, this review addresses the limitations, challenges, and future prospects of studies focused on intratumor microbiota in lung cancer.
Collapse
Affiliation(s)
- Weici Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Jingtong Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zheshun Pi
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Yundi Chen
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton 13850, USA
| | - Guanyu Jiang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China.
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton 13850, USA.
| | - Wenjun Mao
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China.
| |
Collapse
|
3
|
Aitmanaitė L, Širmonaitis K, Russo G. Microbiomes, Their Function, and Cancer: How Metatranscriptomics Can Close the Knowledge Gap. Int J Mol Sci 2023; 24:13786. [PMID: 37762088 PMCID: PMC10531294 DOI: 10.3390/ijms241813786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The interaction between the microbial communities in the human body and the onset and progression of cancer has not been investigated until recently. The vast majority of the metagenomics research in this area has concentrated on the composition of microbiomes, attempting to link the overabundance or depletion of certain microorganisms to cancer proliferation, metastatic behaviour, and its resistance to therapies. However, studies elucidating the functional implications of the microbiome activity in cancer patients are still scarce; in particular, there is an overwhelming lack of studies assessing such implications directly, through analysis of the transcriptome of the bacterial community. This review summarises the contributions of metagenomics and metatranscriptomics to the knowledge of the microbial environment associated with several cancers; most importantly, it highlights all the advantages that metatranscriptomics has over metagenomics and suggests how such an approach can be leveraged to advance the knowledge of the cancer bacterial environment.
Collapse
Affiliation(s)
| | | | - Giancarlo Russo
- EMBL Partnership Institute for Gene Editing, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (L.A.); (K.Š.)
| |
Collapse
|
4
|
Corrêa RO, Castro PR, Moser R, Ferreira CM, Quesniaux VFJ, Vinolo MAR, Ryffel B. Butyrate: Connecting the gut-lung axis to the management of pulmonary disorders. Front Nutr 2022; 9:1011732. [PMID: 36337621 PMCID: PMC9631819 DOI: 10.3389/fnut.2022.1011732] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are metabolites released by bacterial components of the microbiota. These molecules have a wide range of effects in the microbiota itself, but also in host cells in which they are known for contributing to the regulation of cell metabolism, barrier function, and immunological responses. Recent studies indicate that these molecules are important players in the gut-lung axis and highlight the possibility of using strategies that alter their intestinal production to prevent or treat distinct lung inflammatory diseases. Here, we review the effects of the SCFA butyrate and its derivatives in vitro and in vivo on murine models of respiratory disorders, besides discussing the potential therapeutic use of butyrate and the other SCFAs in lung diseases.
Collapse
Affiliation(s)
- Renan Oliveira Corrêa
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Laboratory of Intestinal Immunology, Institut Imagine, INSERM U1163, Paris, France
| | - Pollyana Ribeiro Castro
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Caroline Marcantonio Ferreira
- Department of Pharmaceutics Science, Institute of Environmental, Chemistry, and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
| | | | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster, Institute of Biology, University of Campinas, Campinas, Brazil
- Center for Research on Obesity and Comorbidities, University of Campinas, Campinas, Brazil
- *Correspondence: Marco Aurélio Ramirez Vinolo,
| | - Bernhard Ryffel
- CNRS, INEM, UMR 7355, University of Orléans, Orléans, France
- Bernhard Ryffel,
| |
Collapse
|