1
|
Triska J, Maitra N, Deshotels MR, Haddadin F, Angiolillo DJ, Vilahur G, Jneid H, Atar D, Birnbaum Y. A Comprehensive Review of the Pleiotropic Effects of Ticagrelor. Cardiovasc Drugs Ther 2024; 38:775-797. [PMID: 36001200 DOI: 10.1007/s10557-022-07373-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/03/2022]
Abstract
AIMS This review summarizes the findings of preclinical studies evaluating the pleiotropic effects of ticagrelor. These include attenuation of ischemia-reperfusion injury (IRI), inflammation, adverse cardiac remodeling, and atherosclerosis. In doing so, it aims to provide novel insights into ticagrelor's mechanisms and benefits over other P2Y12 inhibitors. It also generates viable hypotheses for the results of seminal clinical trials assessing ticagrelor use in acute and chronic coronary syndromes. METHODS AND RESULTS A comprehensive review of the preclinical literature demonstrates that ticagrelor protects against IRI in the setting of both an acute myocardial infarction (MI), and when MI occurs while on chronic treatment. Maintenance therapy with ticagrelor also likely mitigates adverse inflammation, cardiac remodeling, and atherosclerosis, while improving stem cell recruitment. These effects are probably mediated by ticagrelor's ability to increase local interstitial adenosine levels which activate downstream cardio-protective molecules. Attenuation and augmentation of these pleiotropic effects by high-dose aspirin and caffeine, and statins respectively may help explain variable outcomes in PLATO and subsequent randomized controlled trials (RCTs). CONCLUSION Most RCTs and meta-analyses have not evaluated the pleiotropic effects of ticagrelor. We need further studies comparing cardiovascular outcomes in patients treated with ticagrelor versus other P2Y12 inhibitors that are mindful of the unique pleiotropic advantages afforded by ticagrelor, as well as possible interactions with other therapies (e.g., aspirin, statins, caffeine).
Collapse
Affiliation(s)
- Jeffrey Triska
- The Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Neil Maitra
- The Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | - Faris Haddadin
- The Section of Cardiology, Baylor College of Medicine, Houston, TX, USA
| | - Dominick J Angiolillo
- Division of Cardiology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Gemma Vilahur
- Cardiovascular Program, Research Institute Hospital de La Santa Creu I Sant Pau, IIB-Sant Pau, Barcelona, Spain
- CiberCV, Institute Carlos III, Madrid, Spain
| | - Hani Jneid
- Department of Medicine, Section of Cardiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Dan Atar
- The Department of Cardiology, Oslo University Hospital Ulleval, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Yochai Birnbaum
- The Section of Cardiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
2
|
Yaghoobian R, Sharifi M, Rezaee M, Vahidi H, Salehi N, Hosseini K. Caffeine Drug Interactions and its Clinical Implication After Acute Coronary Syndrome: A Literature Review. Crit Pathw Cardiol 2023; 22:95-99. [PMID: 37216418 DOI: 10.1097/hpc.0000000000000322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The hemodynamic and cardiovascular impacts of coffee and caffeine have long been controversial. However, due to the worldwide popularity of coffee and caffeinated beverages, it is essential to understand how they affect the cardiovascular system, specifically in patients with a history of acute coronary syndrome. This literature review was conducted to explore the cardiovascular effects of coffee and caffeine and their interactions with common drugs after acute coronary syndrome and percutaneous coronary intervention. The evidence suggests that moderate coffee and caffeine consumption is not associated with cardiovascular disease in healthy individuals and patients with a history of acute coronary syndrome. The interactions of coffee or caffeine with common medications after acute coronary syndrome or percutaneous coronary intervention are less studied. However, based on the current human studies in this field, the only interaction is with the protective effect of statins on cardiac ischemia.
Collapse
Affiliation(s)
- Ramin Yaghoobian
- From the Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifi
- From the Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- From the Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Vahidi
- Cardiology Department of Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Salehi
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kaveh Hosseini
- From the Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Birnbaum Y, Ye R, Chen H, Carlsson L, Whatling C, Fjellström O, Ryberg E, Ye Y. Recombinant Apyrase (AZD3366) Against Myocardial Reperfusion Injury. Cardiovasc Drugs Ther 2023; 37:625-646. [PMID: 35192075 DOI: 10.1007/s10557-022-07329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Recombinant apyrase (AZD3366) increases adenosine production and ticagrelor inhibits adenosine reuptake. We investigated whether intravenous AZD3366 before reperfusion reduces myocardial infarct size (IS) and whether AZD3366 and ticagrelor have additive effects. METHODS Sprague-Dawley rats underwent 30 min ischemia. At 25 min of ischemia, animals received intravenous AZD3366 or vehicle. Additional animals received intravenous CGS15943 (an adenosine receptor blocker) or intraperitoneal ticagrelor. At 24 h reperfusion, IS was assessed by triphenyltetrazolium chloride. Other rats were subjected to 30 min ischemia followed by 1 h or 24 h reperfusion. Myocardial samples were assessed for adenosine levels, RT-PCR, and immunoblotting. RESULTS AZD3366 and ticagrelor reduced IS. The protective effect was blocked by CGS15943. The effect of AZD3366 + ticagrelor was significantly greater than AZD3366. One hour after infarction, myocardial adenosine levels significantly increased with AZD3366, but not with ticagrelor. In contrast, 24 h after infarction, adenosine levels were equally increased by AZD3366 and ticagrelor, and levels were higher in the AZD3366 + ticagrelor group. One hour after reperfusion, AZD3366 and ticagrelor equally attenuated the increase in interleukin-15 (an early inflammatory marker after ischemic cell death) levels, and their combined effects were additive. AZD3366, but not ticagrelor, significantly attenuated the increase in RIP1, RIP3, and P-MLKL (markers of necroptosis) 1 h after reperfusion. AZD3366, but not ticagrelor, significantly attenuated the increase in IL-6 and GSDMD-N (markers of pyroptosis) 1 h after reperfusion. At 24 h of reperfusion, both agents equally attenuated the increase in these markers, and their effects were additive. CONCLUSIONS AZD3366 attenuated inflammation, necrosis, necroptosis, and pyroptosis and limited IS. The effects of AZD3366 and ticagrelor were additive.
Collapse
Affiliation(s)
- Yochai Birnbaum
- The Section of Cardiology, Department of Medicine, Baylor College of Medicine, 7200 Cambridge Street, Houston, TX, 77030, USA.
| | - Regina Ye
- University of Texas at Austin, Austin, TX, USA
| | - Huan Chen
- Department of Acupuncture, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The Department of Biochemistry and Molecular Biology, Medical Branch, University of Texas, 301 University Blvd, BSB 648, Galveston, TX, 77555, USA
| | - Leif Carlsson
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Carl Whatling
- Translational Sciences and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ola Fjellström
- Projects, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Erik Ryberg
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Yumei Ye
- The Department of Biochemistry and Molecular Biology, Medical Branch, University of Texas, 301 University Blvd, BSB 648, Galveston, TX, 77555, USA.
| |
Collapse
|
4
|
Zhuang Y, Yu ML, Lu SF. Purinergic signaling in myocardial ischemia-reperfusion injury. Purinergic Signal 2023; 19:229-243. [PMID: 35254594 PMCID: PMC9984618 DOI: 10.1007/s11302-022-09856-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/18/2022] [Indexed: 10/18/2022] Open
Abstract
Purines and their derivatives, extensively distributed in the body, act as a class of extracellular signaling molecules via a rich array of receptors, also known as purinoceptors (P1, P2X, and P2Y). They mediate multiple intracellular signal transduction pathways and participate in various physiological and pathological cell behaviors. Since the function in myocardial ischemia-reperfusion injury (MIRI), this review summarized the involvement of purinergic signal transduction in diversified pathological processes, including energy metabolism disorder, oxidative stress injury, calcium overload, inflammatory immune response, platelet aggregation, coronary vascular dysfunction, and cell necrosis and apoptosis. Moreover, increasing evidence suggests that purinergic signaling also mediates the prevention and treatment of MIRI, such as ischemic conditioning, pharmacological intervention, and some other therapies. In conclusion, this review exhibited that purinergic signaling mediates the complex processes of MIRI which shows its promising application and prospecting in the future.
Collapse
Affiliation(s)
- Yi Zhuang
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, 138 Xian-lin Avenue, Qixia District, Nanjing, 210023, Jiangsu Province, China
| | - Mei-Ling Yu
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, 138 Xian-lin Avenue, Qixia District, Nanjing, 210023, Jiangsu Province, China
| | - Sheng-Feng Lu
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, 138 Xian-lin Avenue, Qixia District, Nanjing, 210023, Jiangsu Province, China. .,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
5
|
Allahham M, Lerman A, Atar D, Birnbaum Y. Why Not Dipyridamole: a Review of Current Guidelines and Re-evaluation of Utility in the Modern Era. Cardiovasc Drugs Ther 2022; 36:525-532. [PMID: 34245446 PMCID: PMC8271326 DOI: 10.1007/s10557-021-07224-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 12/27/2022]
Abstract
Dipyridamole is an old anti-platelet and coronary vasodilator agent that inhibits platelet phosphodiesterase and increases interstitial adenosine levels. Its use in coronary artery disease (CAD) has fallen out of practice in the modern era with the advent of new anti-platelet agents, and most modern guidelines on the management of CAD either neglect to comment on its utility or outright recommend against it. The majority of the studies used in these guidelines are outdated and took place in an era when high doses of aspirin were used and statins were not widely utilized. There is growing evidence in rat models of dipyridamole's synergy with statins through adenosine modulation resulting in significant myocardial protection against ischemia-reperfusion injury and limitation of infract size. The data in human studies are limited but show a similar potential synergy between dipyridamole and statins. It would thus be prudent to reconsider the recommendations against the use of dipyridamole in CAD and to re-evaluate its possible role and potential benefits through well-designed randomized trials combining it with statins, low-dose aspirin, and/or other anti-platelet agents.
Collapse
Affiliation(s)
- Mahmoud Allahham
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - A Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - D Atar
- Department of Cardiology, Oslo University Hospital Ulleval, Oslo, Norway
- Institute of Clinical Sciences, University of Oslo, Oslo, Norway
| | - Y Birnbaum
- Section of Cardiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Villanueva-García D, Mota-Rojas D, Miranda-Cortés A, Ibarra-Ríos D, Casas-Alvarado A, Mora-Medina P, Martínez-Burnes J, Olmos-Hernández A, Hernández-Avalos I. Caffeine: cardiorespiratory effects and tissue protection in animal models. Exp Anim 2021; 70:431-439. [PMID: 34039788 PMCID: PMC8614017 DOI: 10.1538/expanim.20-0185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/20/2021] [Indexed: 10/31/2022] Open
Abstract
The aim of this review is to analyze the cardiorespiratory and tissue-protective effects of caffeine in animal models. Peer-reviewed literature published between 1975 and 2021 was retrieved from CAB Abstracts, PubMed, ISI Web of Knowledge, and Scopus. Extracted data were analyzed to address the mechanism of action of caffeine on cardiorespiratory parameters (heart rate and rhythm), vasopressor effects, and some indices of respiratory function; we close this review by discussing the current debate on the research carried out on the effects of caffeine on tissue protection. Adenosine acts through specific receptors and is a negative inotropic and chronotropic agent. Blockage of its cardiac receptors can cause tachycardia (with arrhythmogenic potential) due to the intense activity of β1 receptors. In terms of tissue protection, caffeine inhibits hyperoxia-induced pulmonary inflammation by decreasing proinflammatory cytokine expression in animal models. The protection that caffeine provides to tissues is not limited to the CNS, as studies have demonstrated that it generates attenuation of inflammatory effects in pulmonary tissue. It inhibits the effects of some pro-inflammatory cytokines and prevents functional and structural changes.
Collapse
Affiliation(s)
- Dina Villanueva-García
- Division of Neonatology, National Institute of Health, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, 06720, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior, and Animal Welfare Assessment, Department of Animal Production and Agriculture (DPAA), Universidad Autónoma Metropolitana (UAM) Xochimilco Campus, Calzada del Hueso 1100. Col. Villa Quietud. Coyoacán, 04960, Mexico City, Mexico
| | - Agatha Miranda-Cortés
- Clinical Pharmacology and Veterinary Anaesthesia, Department of Biological Science, FESC, Universidad Nacional Autónoma de México (UNAM), Carretera Cuautitlán-Teoloyucan Km. 2.5 San Sebastian Xhala, 54714, Cuautitlán Izcalli, State of Mexico, Mexico
| | - Daniel Ibarra-Ríos
- Division of Neonatology, National Institute of Health, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, 06720, Mexico City, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior, and Animal Welfare Assessment, Department of Animal Production and Agriculture (DPAA), Universidad Autónoma Metropolitana (UAM) Xochimilco Campus, Calzada del Hueso 1100. Col. Villa Quietud. Coyoacán, 04960, Mexico City, Mexico
| | - Patricia Mora-Medina
- Livestock Science Department, Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores Cuautitlán, Carretera Cuautitlán-Teoloyucan Km. 2.5 San Sabastian Xhala, 54714, Cuautitlán Izcalli, State of Mexico, Mexico
| | - Julio Martínez-Burnes
- Graduate and Research Department, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Km 5 Carretera Victoria-Mante, 87000, Cd. Victoria, Tamaulipas, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology, Department Bioterio and Experimental Surgery. Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Calzada México Xochimilco, 289, 14389, Mexico City, Mexico
| | - Ismael Hernández-Avalos
- Clinical Pharmacology and Veterinary Anaesthesia, Department of Biological Science, FESC, Universidad Nacional Autónoma de México (UNAM), Carretera Cuautitlán-Teoloyucan Km. 2.5 San Sebastian Xhala, 54714, Cuautitlán Izcalli, State of Mexico, Mexico
| |
Collapse
|
7
|
Does Inhibition of Nuclear Factor Kappa B Explain the Protective Effect of Ticagrelor on Myocardial Ischemia-Reperfusion Injury? J Cardiovasc Pharmacol 2020; 75:108-111. [PMID: 31876799 DOI: 10.1097/fjc.0000000000000787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Birnbaum Y, Ye Y. Size matters in STEMI: time for translation of ticagrelor? Cardiovasc Res 2020; 114:1817-1818. [PMID: 30184098 DOI: 10.1093/cvr/cvy228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yochai Birnbaum
- The Section of Cardiology, Baylor College of Medicine and the Texas Heart Institute, Baylor St Luke Medical Center, One Baylor Plaza, Houston, TX, USA
| | - Yumei Ye
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
9
|
Unraveling the Interaction of Aspirin, Ticagrelor, and Rosuvastatin on the Progression of Atherosclerosis and Inflammation in Diabetic Mice. Cardiovasc Drugs Ther 2018; 31:489-500. [PMID: 29185103 DOI: 10.1007/s10557-017-6763-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE We explored the effects of rosuvastatin, aspirin, ticagrelor, and clopidogrel, alone or in combinations on the progression of atherosclerosis and inflammasome activation in diabetic mice. Statins and ticagrelor increase the production of 15-epi-lipoxin A4 via cyclooxygenase-2. Aspirin alone increases 15-epi-lipoxin A4, but when combined with statins, cyclooxygenase-2 is completely blocked. METHODS ApoE-/-/db+/db+ double-knockout mice received rosuvastatin (5 mg/kg/day), aspirin (25 mg/kg/day), ticagrelor (300 mg/kg/day), clopidogrel (75 mg/kg/day), or their combination for 14 weeks. Serum 15-epi-lipoxin A4 levels and aortic wall cholesterol content, IL-1β, IL-6, and TNF-α levels, and plaque area were assessed. RESULTS Aspirin, ticagrelor, and rosuvastatin increased 15-epi-lipoxin A4 levels. The combination of rosuvastatin + ticagrelor provided an additive effect. Aspirin attenuated the effect of both ticagrelor and rosuvastatin. Aspirin, ticagrelor, and rosuvastatin reduced the area of the atherosclerotic plaque. The combination of ticagrelor + rosuvastatin provided additive effects. There was a negative interaction when aspirin was combined with ticagrelor or rosuvastatin. Aspirin, ticagrelor, and rosuvastatin decreased serum IL-1β and IL-6 levels. There was no interaction between aspirin and ticagrelor or aspirin and rosuvastatin, whereas combining rosuvastatin and ticagrelor provided an additive effect. Aspirin, ticagrelor, and rosuvastatin all decreased TNF-α levels. Aspirin attenuated the effect of both ticagrelor and rosuvastatin, and there was no additive effect of combining ticagrelor + rosuvastatin. CONCLUSIONS We found an intricate interaction between aspirin, ticagrelor, and rosuvastatin, as aspirin reduced both ticagrelor and rosuvastatin ability to ameliorate inflammation and atherosclerosis. In contrast, we found additive effects when ticagrelor and rosuvastatin were combined.
Collapse
|
10
|
Birnbaum Y, Birnbaum GD, Birnbaum I, Nylander S, Ye Y. Ticagrelor and Rosuvastatin Have Additive Cardioprotective Effects via Adenosine. Cardiovasc Drugs Ther 2017; 30:539-550. [PMID: 27830382 DOI: 10.1007/s10557-016-6701-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Ticagrelor inhibits the equilibrative-nucleoside-transporter-1 and thereby, adenosine cell re-uptake. Ticagrelor limits infarct size (IS) in non-diabetic rats and the effect is adenosine-dependent. Statins, via ecto-5'-nucleotidase activation, also increase adenosine levels and limit IS. HYPOTHESIS Ticagrelor and rosuvastatin have additive effects on myocardial adenosine levels, and therefore, on IS and post-reperfusion activation of the NLRP3-inflammasome. METHODS Diabetic ZDF rats received via oral gavage; water (control), ticagrelor (150 mg/kg/d), prasugrel (7.5 mg/kg/d), rosuvastatin (5 mg/kg/d), ticagrelor + rosuvastatin and prasugrel + rosuvastatin for 3d. On day 4, rats underwent 30 min coronary artery occlusion and 24 h of reperfusion. Two additional groups received, ticagrelor + rosuvastatin or water in combination with CGS15943 (CGS, an adenosine receptor antagonist, 10 mg/kg i.p. 1 h before ischemia). RESULTS Both ticagrelor and rosuvastatin increased myocardial adenosine levels with an additive effect of the combination whereas prasugrel had no effect. Similarly, both ticagrelor and rosuvastatin significantly reduced IS with an additive effect of the combination whereas prasugrel had no effect. The effect on IS was adenosine dependent as CGS15943 reversed the effect of ticagrelor + rosuvastatin. The ischemia-reperfusion injury increased myocardial mRNA levels of NLRP3, ASC, IL-1β and IL-6. Ticagrelor and rosuvastatin, but not prasugrel, significantly decreased these pro-inflammatory mediators with a trend to an additive effect of the combination. The combination also increased the levels of anti-inflammatory 15-epilipoxin A4. CONCLUSIONS Ticagrelor and rosuvastatin when given in combination have an additive effect on local myocardial adenosine levels in the setting of ischemia reperfusion. This translates into an additive cardioprotective effect mediated by adenosine-induced effects including downregulation of pro- but upregulation of anti-inflammatory mediators.
Collapse
Affiliation(s)
- Yochai Birnbaum
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA.,The section of Cardiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Gilad D Birnbaum
- The Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Itamar Birnbaum
- The section of Cardiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Yumei Ye
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA.
| |
Collapse
|
11
|
Adenosine Receptor Activation in the "Trigger" Limb of Remote Pre-Conditioning Mediates Human Endothelial Conditioning and Release of Circulating Cardioprotective Factor(s). JACC Basic Transl Sci 2016; 1:461-471. [PMID: 30167533 PMCID: PMC6113421 DOI: 10.1016/j.jacbts.2016.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/09/2016] [Accepted: 06/16/2016] [Indexed: 01/22/2023]
Abstract
Pre-conditioning has emerged as a potentially powerful means of reducing ischemia-reperfusion injury. Several animal models have implicated adenosine in pre-conditioning pathways, but its role in human physiology is unknown. In human volunteers, the authors demonstrate that adenosine receptor activation in “trigger” tissue is an important step in initiating a pre-conditioning signal, but adenosine receptor blockade in “target” tissue does not block the protection afforded by pre-conditioning. The authors also demonstrate that pre-conditioning elaborates a transferrable cardioprotective factor(s) into the serum. This elaboration is prevented by adenosine receptor blockade but can be mirrored by the infusion of exogenous adenosine. An improved understanding of the physiological effectors of pre-conditioning may allow for better targeted clinical studies of pre-conditioning and pre-conditioning mimetics in the future.
Remote ischemic pre-conditioning (rIPC) has emerged as a potential mechanism to reduce ischemia-reperfusion injury. Clinical data, however, have been mixed, and its physiological basis remains unclear, although it appears to involve release of circulating factor(s) and/or neural pathways. Here, the authors demonstrate that adenosine receptor activation is an important step in initiating human pre-conditioning; that pre-conditioning liberates circulating cardioprotective factor(s); and that exogenous adenosine infusion is able to recapitulate release of this factor. However, blockade of adenosine receptors in ischemic tissue does not block the protection afforded by pre-conditioning. These data have important implications for defining the physiology of human pre-conditioning and its translation to future clinical trials.
Collapse
|
12
|
Statin-Induced Cardioprotection Against Ischemia-Reperfusion Injury: Potential Drug-Drug Interactions. Lesson to be Learnt by Translating Results from Animal Models to the Clinical Settings. Cardiovasc Drugs Ther 2016; 29:461-7. [PMID: 26303765 DOI: 10.1007/s10557-015-6615-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Numerous interventions have been shown to limit myocardial infarct size in animal models; however, most of these interventions have failed to have a significant effect in clinical trials. One potential explanation for the lack of efficacy in the clinical setting is that in bench models, a single intervention is studied without the background of other interventions or modalities. This is in contrast to the clinical setting in which new medications are added to the "standard of care" treatment that by now includes a growing number of medications. Drug-drug interaction may lead to alteration, dampening, augmenting or masking the effects of the intended intervention. We use the well described model of statin-induced myocardial protection to demonstrate potential interactions with agents which are commonly concomitantly used in patients with stable coronary artery disease and/or acute coronary syndromes. These interactions could potentially explain the reduced efficacy of statins in the clinical trials compared to the animal models. In particular, caffeine and aspirin could attenuate the infarct size limiting effects of statins; morphine could delay the onset of protection or mask the protective effect in patients with ST elevation myocardial infarction, whereas other anti-platelet agents (dipyridamole, cilostazol and ticagrelor) may augment (or mask) the effect due to their favorable effects on adenosine cell reuptake and intracellular cAMP levels. We recommend that after characterizing the effects of new modalities in single intervention bench research, studies should be repeated in the background of standard-of-care medications to assure that the magnitude of the effect is not altered before proceeding with clinical trials.
Collapse
|
13
|
Pecoraro V, Moja L, Dall'Olmo L, Cappellini G, Garattini S. Most appropriate animal models to study the efficacy of statins: a systematic review. Eur J Clin Invest 2014; 44:848-71. [PMID: 25066257 DOI: 10.1111/eci.12304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 07/21/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND In animal models and clinical trials, statins are reported as effective in reducing cholesterol levels and lowering the risk of cardiovascular diseases. We have aggregated the findings in animal models - mice, rats and rabbits - using the technique of systematic review and meta-analysis to highlight differences in the efficacy of statins. MATERIALS AND METHODS We searched Medline and Embase. After examining all eligible articles, we extracted results about total cholesterol and other blood parameters, blood pressure, myocardial infarction and survival. Weighted and standard mean difference random effects meta-analysis was used to measure overall efficacy in prespecified species, strains and subgroups. RESULTS We included in systematic review 161 animal studies and we analysed 120 studies, accounting for 2432 animals. Statins lowered the total cholesterol across all species, although with large differences in the effect size: -30% in rabbits, -20% in mice and -10% in rats. The reduction was larger in animals fed on a high-cholesterol diet. Statins reduced infarct volume but did not consistently reduce the blood pressure or effect the overall survival. Few studies considered strains at high risk of cardiovascular diseases or hard outcomes. CONCLUSIONS Although statins showed substantial efficacy in animal models, few preclinical data considered conditions mimicking human pathologies for which the drugs are clinically indicated and utilized. The empirical finding that statins are more effective in lowering cholesterol derived from an external source (i.e. diet) conflicts with statin's supposed primary mechanism of action.
Collapse
Affiliation(s)
- Valentina Pecoraro
- Clinical Epidemiology Unit, IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| | | | | | | | | |
Collapse
|
14
|
Nanhwan MK, Ling S, Kodakandla M, Nylander S, Ye Y, Birnbaum Y. Chronic Treatment With Ticagrelor Limits Myocardial Infarct Size. Arterioscler Thromb Vasc Biol 2014; 34:2078-85. [DOI: 10.1161/atvbaha.114.304002] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Objective—
In a phase III clinical trial (PLATelet inhibition and patient Outcomes, PLATO), ticagrelor provided better clinical outcomes than clopidogrel in patients with acute coronary syndromes. In addition to P2Y
12
-receptor antagonism, ticagrelor prevents cell uptake of adenosine and has proven able to augment adenosine effects. Adenosine protects the heart against ischemia–reperfusion injury. We compared the effects of clopidogrel and ticagrelor on myocardial infarct size (IS).
Approach and Results—
Rats received oral ticagrelor (0, 75, 150, or 300 mg/kg/d) or clopidogrel (30 or 90 mg/kg/d) for 7 days and underwent 30-minute coronary artery ligation and 24-hour reperfusion. Area at risk was assessed by blue dye and IS by 2,3,5-triphenyl-tetrazolium-chloride. Cyclooxygenase-2 (COX2) enzyme activity was assessed by ELISA and expression by real-time polymerase chain reaction. Mechanism responsible was explored using adenosine-receptor antagonist (CGS15943, an A
2A
/A
1
antagonist) or cyclooxygenase inhibition by either aspirin (5, 10, or 25 mg/kg) or specific cyclooxygenase-1 (SC560) or COX2 (SC5815) inhibitors. Ticagrelor, dose-dependently, reduced IS, whereas clopidogrel had no effect. Adenosine-receptor antagonism blocked the ticagrelor effect and COX2 inhibition by SC5815, or high-dose aspirin attenuated the IS-limiting effect of ticagrelor, whereas cyclooxygenase-1 inhibition or low-dose aspirin had no effect. Ticagrelor, but not clopidogrel, upregulated COX2 expression and activity. Also this effect was blocked by adenosine-receptor antagonism. Ticagrelor, but not clopidogrel, increased Akt and endothelial nitric oxide synthase phosphorylation.
Conclusions—
Ticagrelor, but not clopidogrel, reduces myocardial IS. The protective effect of ticagrelor was dependent on adenosine-receptor activation with downstream upregulation of endothelial nitric oxide synthase and COX2 activity.
Collapse
Affiliation(s)
- Manjyot K. Nanhwan
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston (M.K.N., S.L., M.K., Y.Y., Y.B.); State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China (S.L.); AstraZeneca R&D, Mölndal, Sweden (S.N.); and Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (Y.B.)
| | - Shukuan Ling
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston (M.K.N., S.L., M.K., Y.Y., Y.B.); State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China (S.L.); AstraZeneca R&D, Mölndal, Sweden (S.N.); and Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (Y.B.)
| | - Monica Kodakandla
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston (M.K.N., S.L., M.K., Y.Y., Y.B.); State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China (S.L.); AstraZeneca R&D, Mölndal, Sweden (S.N.); and Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (Y.B.)
| | - Sven Nylander
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston (M.K.N., S.L., M.K., Y.Y., Y.B.); State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China (S.L.); AstraZeneca R&D, Mölndal, Sweden (S.N.); and Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (Y.B.)
| | - Yumei Ye
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston (M.K.N., S.L., M.K., Y.Y., Y.B.); State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China (S.L.); AstraZeneca R&D, Mölndal, Sweden (S.N.); and Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (Y.B.)
| | - Yochai Birnbaum
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston (M.K.N., S.L., M.K., Y.Y., Y.B.); State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China (S.L.); AstraZeneca R&D, Mölndal, Sweden (S.N.); and Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (Y.B.)
| |
Collapse
|
15
|
Association of coffee drinking with all-cause mortality: a systematic review and meta-analysis. Public Health Nutr 2014; 18:1282-91. [PMID: 25089347 DOI: 10.1017/s1368980014001438] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE We aimed to use the meta-analysis method to assess the relationship between coffee drinking and all-cause mortality. DESIGN Categorical and dose-response meta-analyses were conducted using random-effects models. SETTING We systematically searched and identified eligible literature in the PubMed and Scopus databases. SUBJECTS Seventeen studies including 1 054 571 participants and 131 212 death events from all causes were included in the present study. RESULTS Seventeen studies were included and evaluated in the meta-analysis. A U-shaped dose-response relationship was found between coffee consumption and all-cause mortality (P for non-linearity <0.001). Compared with non/occasional coffee drinkers, the relative risks for all-cause mortality were 0.89 (95 % CI 0.85, 0.93) for 1-<3 cups/d, 0.87 (95 % CI 0.83, 0.91) for 3-<5 cups/d and 0.90 (95 % CI 0.87, 0.94) for ≥5 cups/d, and the relationship was more marked in females than in males. CONCLUSIONS The present meta-analysis of prospective cohort studies indicated that light to moderate coffee intake is associated with a reduced risk of death from all causes, particularly in women.
Collapse
|
16
|
Protective Effect of Caffeine Administration on Myocardial Ischemia/Reperfusion Injury in Rats. Shock 2011; 36:289-94. [DOI: 10.1097/shk.0b013e3182222915] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Abstract
Coffee is the leading worldwide beverage after water and its trade exceeds US $10 billion worldwide. Controversies regarding its benefits and risks still exist as reliable evidence is becoming available supporting its health promoting potential; however, some researchers have argued about the association of coffee consumption with cardiovascular complications and cancer insurgence. The health-promoting properties of coffee are often attributed to its rich phytochemistry, including caffeine, chlorogenic acid, caffeic acid, hydroxyhydroquinone (HHQ), etc. Many research investigations, epidemiological studies, and meta-analyses regarding coffee consumption revealed its inverse correlation with that of diabetes mellitus, various cancer lines, Parkinsonism, and Alzheimer's disease. Moreover, it ameliorates oxidative stress because of its ability to induce mRNA and protein expression, and mediates Nrf2-ARE pathway stimulation. Furthermore, caffeine and its metabolites help in proper cognitive functionality. Coffee lipid fraction containing cafestol and kahweol act as a safeguard against some malignant cells by modulating the detoxifying enzymes. On the other hand, their higher levels raise serum cholesterol, posing a possible threat to coronary health, for example, myocardial and cerebral infarction, insomnia, and cardiovascular complications. Caffeine also affects adenosine receptors and its withdrawal is accompanied with muscle fatigue and allied problems in those addicted to coffee. An array of evidence showed that pregnant women or those with postmenopausal problems should avoid excessive consumption of coffee because of its interference with oral contraceptives or postmenopausal hormones. This review article is an attempt to disseminate general information, health claims, and obviously the risk factors associated with coffee consumption to scientists, allied stakeholders, and certainly readers.
Collapse
Affiliation(s)
- Masood Sadiq Butt
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan.
| | | |
Collapse
|
18
|
Abstract
In the concentration range that is normally achieved in humans, e.g., after the drinking of coffee or in patients treated with theophylline, the cardiovascular effects of methylxanthines are primarily due to antagonism of adenosine A(1) and A(2) receptors. Inhibition of phosphodiesterases or mobilization of intracellular calcium requires much higher concentrations. In conscious humans, acute exposure to caffeine results in an increase in blood pressure by an increased total peripheral resistance, and a slight decrease in heart rate. This overall hemodynamic response is composed of direct effects of caffeine on vascular tone, on myocardial contractility and conduction, and on the sympathetic nervous system. Caffeine is the most widely consumed methylxanthine, mainly derived from coffee intake. Regular coffee consumption can affect various traditional cardiovascular risk factors, including a slight increase in blood pressure, an increase in plasma cholesterol and homocysteine levels, and a reduced incidence of type 2 diabetes mellitus. Although most prospective studies have not reported an association between coffee consumption and coronary heart disease, these findings do not exclude that the acute hemodynamic and neurohumoral effects of coffee consumption could have an adverse effect in selected patient groups who are more vulnerable for these effects, based on their genetic profile or medication use.
Collapse
Affiliation(s)
- Niels P Riksen
- Department of Pharmacology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
19
|
Meijer P, Wouters CW, van den Broek PHH, de Rooij M, Scheffer GJ, Smits P, Rongen GA. Upregulation of ecto-5'-nucleotidase by rosuvastatin increases the vasodilator response to ischemia. Hypertension 2010; 56:722-7. [PMID: 20679180 DOI: 10.1161/hypertensionaha.110.155689] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
3-Hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors (statins) are effective in the primary and secondary prevention of cardiovascular events. Although originally developed to improve lipid profile, statins have demonstrated a surplus of beneficial pleiotropic effects, including improved endothelial function, reduced inflammation, and increased tolerance to ischemia-reperfusion injury. In preclinical studies, increased ecto-5'-nucleotidase activity, the key enzyme in extracellular adenosine formation, plays an important role in these effects. Because human data are absent, we explored the effects of rosuvastatin on ecto-5'-nucleotidase activity and the clinical relevance of increased extracellular adenosine during ischemia in humans in vivo. The forearm vasodilator responses to 3 increasing periods of forearm ischemia (2, 5, and 13 minutes) were determined during placebo and caffeine (an adenosine receptor antagonist) infusion into the brachial artery. At the end of an 8-day treatment period with rosuvastatin (20 mg per day), this whole procedure was repeated. During both experiments, ecto-5'-nucleotidase activity was determined. Vasodilator responses are expressed as the percentage increase in forearm blood flow ratio from baseline. Rosuvastatin increased ecto-5'-nucleotidase activity by 49±17% and enhanced the vasodilator response after 2, 5, and 13 minutes of ischemia in the absence (146±19, 330±26, and 987±133 to 312±77, 566±107, and 1533±267) but not in the presence of caffeine (98±25, 264±54, and 727±111 versus 95±19, 205±34, and 530±62). Rosuvastatin increases extracellular formation of adenosine in humans in vivo probably by enhancing ecto-5'-nucleotidase activity. This action results in the improvement of reactive hyperemia and may further enhance the clinical benefit of statins, in particular in conditions of ischemia.
Collapse
Affiliation(s)
- Patrick Meijer
- Departments of Pharmacology-Toxicology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
20
|
Babiker FA, Lorenzen-Schmidt I, Mokelke E, Vanagt WY, Delhaas T, Waltenberger J, Cleutjens JP, Prinzen FW. Long-term protection and mechanism of pacing-induced postconditioning in the heart. Basic Res Cardiol 2010; 105:523-33. [PMID: 20336304 PMCID: PMC2862957 DOI: 10.1007/s00395-010-0095-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 02/18/2010] [Accepted: 03/13/2010] [Indexed: 11/30/2022]
Abstract
Brief periods of ventricular pacing during the early reperfusion phase (pacing-induced postconditioning, PPC) have been shown to reduce infarct size as measured after 2 h of reperfusion. In this study, we investigated (1) whether PPC leads to maintained reduction in infarct size, (2) whether abnormal mechanical load due to asynchronous activation is the trigger for PPC and (3) the signaling pathways that are involved in PPC. Rabbit hearts were subjected to 30 min of coronary occlusion in vivo, followed by 6 weeks of reperfusion. PPC consisted of ten 30-s intervals of left ventricular (LV) pacing, starting at reperfusion. PPC reduced infarct size (TTC staining) normalized to area at risk, from 49.0 ± 3.3% in control to 22.9 ± 5.7% in PPC rabbits. In isolated ejecting rabbit hearts, replacing LV pacing by biventricular pacing abolished the protective effect of PPC, whereas ten 30-s periods of high preload provided a protective effect similar to PPC. The protective effect of PPC was neither affected by the adenosine receptor blocker 8-SPT nor by the angiotensin II receptor blocker candesartan, but was abrogated by the cytoskeletal microtubule-disrupting agent colchicine. Blockers of the mitochondrial KATP channel (5HD), PKC (chelerythrine) and PI3-kinase (wortmannin) all abrogated the protection provided by PPC. In the in situ pig heart, PPC reduced infarct size from 35 ± 4 to 16 ± 12%, a protection which was abolished by the stretch-activated channel blocker gadolinium. No infarct size reduction was achieved if PPC application was delayed by 5 min or if only five pacing cycles were used. The present study indicates that (1) PPC permanently reduces myocardial injury, (2) abnormal mechanical loading is a more likely trigger for PPC than electrical stimulation or G-coupled receptor stimulation and (3) PPC may share downstream pathways with other modes of cardioprotection.
Collapse
Affiliation(s)
- Fawzi A Babiker
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Meijer P, Oyen WJG, Dekker D, van den Broek PHH, Wouters CW, Boerman OC, Scheffer GJ, Smits P, Rongen GA. Rosuvastatin increases extracellular adenosine formation in humans in vivo: a new perspective on cardiovascular protection. Arterioscler Thromb Vasc Biol 2009; 29:963-8. [PMID: 19359665 DOI: 10.1161/atvbaha.108.179622] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Statins may increase extracellular adenosine formation from adenosine monophosphate by enhancing ecto-5'-nucleotidase activity. This theory was tested in humans using dipyridamole-induced vasodilation as a read-out for local adenosine formation. Dipyridamole inhibits the transport of extracellular adenosine into the cytosol resulting in increased extracellular adenosine and subsequent vasodilation. In addition, we studied the effect of statin therapy in a forearm model of ischemia-reperfusion injury. METHODS AND RESULTS Volunteers randomly received rosuvastatin or placebo in a double-blind parallel design (n=21). The forearm vasodilator response to intraarterial dipyridamole was determined in the absence and presence of the adenosine antagonist caffeine. During a separate visit the vasodilator response to nitroprusside and adenosine was established. In addition, healthy men were randomly divided in 3 groups to receive either placebo (n=10), rosuvastatin (n=22), or rosuvastatin combined with intravenous caffeine (n=12). Subsequently, volunteers performed forearm ischemic exercise. At reperfusion, Tc-99m-labeled annexin A5 was infused intravenously and scintigraphic images were acquired, providing an early marker of cell injury. Rosuvastatin treatment significantly increased the vasodilator response to dipyridamole, which was prevented by caffeine. Rosuvastatin did not influence the response to either sodium nitroprusside or adenosine indicating a specific interaction between rosuvastatin and dipyridamole, which does not result from an effect of rosuvastatin on adenosine clearance nor adenosine-receptor affinity or efficacy. Rosuvastatin increased tolerance to ischemia-reperfusion injury, which was attenuated by caffeine. CONCLUSIONS Rosuvastatin increases extracellular adenosine formation, which provides protection against ischemia-reperfusion injury in humans in vivo. Therefore, statins and dipyridamole may interact synergistically.
Collapse
Affiliation(s)
- Patrick Meijer
- Radboud University Nijmegen Medical Centre, Department of Pharmacology and Toxicology, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ludman A, Venugopal V, Yellon DM, Hausenloy DJ. Statins and cardioprotection — More than just lipid lowering? Pharmacol Ther 2009; 122:30-43. [DOI: 10.1016/j.pharmthera.2009.01.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Indexed: 11/29/2022]
|
23
|
Riksen NP, Rongen GA, Smits P. Acute and long-term cardiovascular effects of coffee: Implications for coronary heart disease. Pharmacol Ther 2009; 121:185-91. [DOI: 10.1016/j.pharmthera.2008.10.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
|
24
|
Ye Y, Lin Y, Perez-Polo JR, Birnbaum Y. Oral glyburide, but not glimepiride, blocks the infarct-size limiting effects of pioglitazone. Cardiovasc Drugs Ther 2008; 22:429-36. [PMID: 18825491 DOI: 10.1007/s10557-008-6138-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 09/10/2008] [Indexed: 12/26/2022]
Abstract
BACKGROUND Many patients with type 2 diabetes mellitus receive several oral hypoglycemic agents, including sulfonylurea drugs. Intravenous glyburide (Glyb), a sulfonylurea agent, blocks the protective effects of "ischemic" and pharmacologic preconditioning in various animal models without affecting myocardial infarct size when administered alone. However, there are conflicting results when other sulfonylurea drugs are used. Pioglitazone (PIO) reduces infarct size in the rat. We asked whether oral Glyb and glimepiride (Glim) affect the infarct size-limiting effects of PIO. METHODS Sprague-Dawley rats received 3-day oral treatment with: PIO (5 mg/kg/day); PIO + Glyb (10 mg/kg/day); PIO + Glim (4 mg/kg/day) or water alone (experiment 1) or PIO (5 mg/kg/day) with or without 5-hydroxydecanoate (5HD, 10 mg/kg), a specific mitochondrial ATP-sensitive K+ channels inhibitor, administered intravenously 30 min before coronary artery ligation. PIO, Glyb and Glim were administered by oral gavage. Sugar 5% was added to water to prevent hypoglycemia. Rats underwent 30 min coronary artery occlusion and 4 h reperfusion (n = 6 in each group). Ischemic area at risk was assessed by blue dye and infarct size by triphenyl-tetrazolium-chloride. RESULTS Body weight and the size of the area at risk were comparable among groups. Infarct size (% of the area at risk) was significantly smaller in the PIO (14.3 +/- 1.1%; p < 0.001) and PIO + Glim (13.2 +/- 0.8%; p < 0.001) groups than in the control group (37.7 +/- 1.2%). Glyb completely blocked the effect of PIO (43.0 +/- 1.7%; p < 0.001). Glim did not affect the protective effect of PIO (p = 0.993). 5HD blocked the protective effect of PIO (infarct size 48.5 +/- 0.8% versus 14.8 +/- 0.6%, respectively; p < 0.0001). In conclusion, the infarct size limiting effects of PIO are dependent on activation of mitochondrial ATP-sensitive K+ channels. Oral Glyb, but not Glim, blocks the infarct size limiting effects of PIO. It is plausible that Glyb affects other pleiotropic effects of PIO and thus may attenuate favorable effects on cardiovascular outcomes. In contrast, Glim does not attenuate the protective effect of PIO.
Collapse
Affiliation(s)
- Yumei Ye
- The Division of Cardiology, University of Texas Medical Branch, 5.106 John Sealy Annex, 301 University Blvd, Galveston, TX 77555-0553, USA
| | | | | | | |
Collapse
|
25
|
Riksen NP, Hausenloy DJ, Yellon DM. Wake up and smell the coffee: yet another no go for cardiac patients? : editorial to "caffeinated coffee blunts the myocardial protective effects of statins against ischemia-reperfusion injury in the rat" by Ye et al. Cardiovasc Drugs Ther 2008; 22:257-9. [PMID: 18415673 PMCID: PMC2493530 DOI: 10.1007/s10557-008-6108-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 03/24/2008] [Indexed: 12/01/2022]
Affiliation(s)
- Niels P. Riksen
- Department of Pharmacology–Toxicology 149, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
- Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX UK
| | - Derek J. Hausenloy
- Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX UK
| | - Derek M. Yellon
- Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX UK
| |
Collapse
|