1
|
Yang Z, He Y, Wu D, Shi W, Liu P, Tan J, Wang R, Yu B. Antiferroptosis therapy alleviated the development of atherosclerosis. MedComm (Beijing) 2024; 5:e520. [PMID: 38576455 PMCID: PMC10993356 DOI: 10.1002/mco2.520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/18/2024] [Accepted: 03/02/2024] [Indexed: 04/06/2024] Open
Abstract
Ferroptosis has been confirmed to be associated with various diseases, but the relationship between ferroptosis and atherosclerosis (AS) remains unclear. Our research detailly clarified the roles of ferroptosis in three continuous and main pathological stages of AS respectively (injury of endothelial cells [ECs], adhesion of monocytes, and formation of foam cells). We confirmed that oxidized low-density lipoprotein (ox-LDL), the key factor in the pathogenesis of AS, strongly induced ferroptosis in ECs. Inhibition of ferroptosis repressed the adhesion of monocytes to ECs by inhibiting inflammation of ECs. Ferroptosis also participated in the formation of foam cells and lipids by regulating the cholesterol efflux of macrophages. Further research confirmed that ox-LDL repressedthe activity of glutathione peroxidase 4 (GPX4), the classic lipid peroxide scavenger. Treatment of a high-fat diet significantly induced ferroptosis in murine aortas and aortic sinuses, which was accompanied by AS lesions and hyperlipidemia. Treatment with ferroptosis inhibitors significantly reduced ferroptosis, hyperlipidemia, and AS lesion development. In conclusion, our research determined that ox-LDL induced ferroptosis by repressing the activity of GPX4. Antiferroptosis treatment showed promising treatment effects in vivo. Ferroptosis-associated indexes also showed promising diagnostic potential in AS patients.
Collapse
Affiliation(s)
- Zhou Yang
- Department of Vascular SurgeryShanghai Pudong HospitalFudan University Pudong Medical CenterShanghaiChina
- Fudan Zhangjiang Institute, Fudan UniversityShanghaiChina
- Shanghai Key Laboratory of Vascular Lesions Regulation and RemodelingShanghaiChina
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghaiChina
| | - Yue He
- Shanghai University of Traditional Chinese MedicineShanghaiChina
- Department of CardiologyShanghai Eighth People's HospitalShanghaiChina
- Shanghai Engineering Research Center of AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Dejun Wu
- Department of General SurgeryShanghai Pudong HospitalFudan University Pudong Medical CenterShanghaiChina
| | - Weihao Shi
- Department of Vascular SurgeryHuashan Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Ping Liu
- Shanghai University of Traditional Chinese MedicineShanghaiChina
- Shanghai University of Traditional Chinese MedicineDepartment of CardiologyLonghua HospitalShanghaiChina
| | - Jinyun Tan
- Department of Vascular SurgeryHuashan Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Rui Wang
- Department of Cardiovascular SurgeryNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Bo Yu
- Department of Vascular SurgeryShanghai Pudong HospitalFudan University Pudong Medical CenterShanghaiChina
- Fudan Zhangjiang Institute, Fudan UniversityShanghaiChina
- Shanghai Key Laboratory of Vascular Lesions Regulation and RemodelingShanghaiChina
- Department of Vascular SurgeryHuashan Hospital Affiliated to Fudan UniversityShanghaiChina
| |
Collapse
|
2
|
Nègre-Salvayre A, Salvayre R. Reactive Carbonyl Species and Protein Lipoxidation in Atherogenesis. Antioxidants (Basel) 2024; 13:232. [PMID: 38397830 PMCID: PMC10886358 DOI: 10.3390/antiox13020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Atherosclerosis is a multifactorial disease of medium and large arteries, characterized by the presence of lipid-rich plaques lining the intima over time. It is the main cause of cardiovascular diseases and death worldwide. Redox imbalance and lipid peroxidation could play key roles in atherosclerosis by promoting a bundle of responses, including endothelial activation, inflammation, and foam cell formation. The oxidation of polyunsaturated fatty acids generates various lipid oxidation products such as reactive carbonyl species (RCS), including 4-hydroxy alkenals, malondialdehyde, and acrolein. RCS covalently bind to nucleophilic groups of nucleic acids, phospholipids, and proteins, modifying their structure and activity and leading to their progressive dysfunction. Protein lipoxidation is the non-enzymatic post-translational modification of proteins by RCS. Low-density lipoprotein (LDL) oxidation and apolipoprotein B (apoB) modification by RCS play a major role in foam cell formation. Moreover, oxidized LDLs are a source of RCS, which form adducts on a huge number of proteins, depending on oxidative stress intensity, the nature of targets, and the availability of detoxifying systems. Many systems are affected by lipoxidation, including extracellular matrix components, membranes, cytoplasmic and cytoskeletal proteins, transcription factors, and other components. The mechanisms involved in lipoxidation-induced vascular dysfunction are not fully elucidated. In this review, we focus on protein lipoxidation during atherogenesis.
Collapse
Affiliation(s)
- Anne Nègre-Salvayre
- Inserm Unité Mixte de Recherche (UMR), 1297 Toulouse, Centre Hospitalier Universitaire (CHU) Rangueil—BP 84225, 31432 Toulouse CEDEX 4, France;
- Faculty of Medicine, University of Toulouse, 31432 Toulouse, France
| | - Robert Salvayre
- Inserm Unité Mixte de Recherche (UMR), 1297 Toulouse, Centre Hospitalier Universitaire (CHU) Rangueil—BP 84225, 31432 Toulouse CEDEX 4, France;
- Faculty of Medicine, University of Toulouse, 31432 Toulouse, France
| |
Collapse
|
3
|
Hernández-Ríos P, Pussinen PJ, Vernal R, Hernández M. Oxidative Stress in the Local and Systemic Events of Apical Periodontitis. Front Physiol 2017; 8:869. [PMID: 29163211 PMCID: PMC5672116 DOI: 10.3389/fphys.2017.00869] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is involved in the pathogenesis of a variety of inflammatory disorders. Apical periodontitis (AP) usually results in the formation of an osteolytic apical lesion (AL) caused by the immune response to endodontic infection. Reactive oxygen species (ROS) produced by phagocytic cells in response to bacterial challenge represent an important host defense mechanism, but disturbed redox balance results in tissue injury. This mini review focuses on the role of oxidative stress in the local and associated systemic events in chronic apical periodontitis. During endodontic infection, ligation of Toll-like receptors (TLRs) on phagocytes' surface triggers activation, phagocytosis, synthesis of ROS, activation of humoral and cellular responses, and production of inflammatory mediators, such as, cytokines and matrix metalloproteinases (MMPs). The increment in ROS perturbs the normal redox balance and shifts cells into a state of oxidative stress. ROS induce molecular damage and disturbed redox signaling, that result in the loss of bone homeostasis, increased pro-inflammatory mediators, and MMP overexpression and activation, leading to apical tissue breakdown. On the other hand, oxidative stress has been strongly involved in the pathogenesis of atherosclerosis, where a chronic inflammatory process develops in the arterial wall. Chronic AP is associated with an increased risk of cardiovascular diseases (CVD) and especially atherogenesis. The potential mechanisms linking these diseases are also discussed.
Collapse
Affiliation(s)
- Patricia Hernández-Ríos
- Department of Conservative Dentistry, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - Pirkko J Pussinen
- Oral and Maxillofacial Diseases, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Rolando Vernal
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Marcela Hernández
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
4
|
Nègre-Salvayre A, Garoby-Salom S, Swiader A, Rouahi M, Pucelle M, Salvayre R. Proatherogenic effects of 4-hydroxynonenal. Free Radic Biol Med 2017; 111:127-139. [PMID: 28040472 DOI: 10.1016/j.freeradbiomed.2016.12.038] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 01/08/2023]
Abstract
4-hydroxy-2-nonenal (HNE) is a α,β-unsaturated hydroxyalkenal generated by peroxidation of n-6 polyunsaturated fatty acid. This reactive carbonyl compound exhibits a huge number of biological properties that result mainly from the formation of HNE-adducts on free amino groups and thiol groups in proteins. In the vascular system, HNE adduct accumulation progressively leads to cellular dysfunction and tissue damages that are involved in the progression of atherosclerosis and related diseases. HNE contributes to the atherogenicity of oxidized LDL, by forming HNE-apoB adducts that deviate the LDL metabolism to the scavenger receptor pathway of macrophagic cells, and lead to the formation of foam cells. HNE activates transcription factors (Nrf2, NF-kappaB) that (dys)regulate various cellular responses ranging from hormetic and survival signaling at very low concentrations, to inflammatory and apoptotic effects at higher concentrations. Among a variety of cellular targets, HNE can modify signaling proteins involved in atherosclerotic plaque remodeling, particularly growth factor receptors (PDGFR, EGFR), cell cycle proteins, mitochondrial and endoplasmic reticulum components or extracellular matrix proteins, which progressively alters smooth muscle cell proliferation, angiogenesis and induces apoptosis. HNE adducts accumulate in the lipidic necrotic core of advanced atherosclerotic lesions, and may locally contribute to macrophage and smooth muscle cell apoptosis, which may induce plaque destabilization and rupture, thereby increasing the risk of athero-thrombotic events.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert Salvayre
- Inserm UMR-1048, France; University of Toulouse, Faculty of Medicine, Biochemistry Dept, Toulouse, France; CHU Toulouse, Rangueil, Toulouse, France
| |
Collapse
|
5
|
Zhao Y, Li Y, Ning X, Chen K, Zhang S. Association of angiotensin II receptor 1 and lectin-like oxidized low-density lipoprotein receptor-1 mediates the cardiac hypertrophy induced by oxidized low-density lipoprotein. Biochem Biophys Res Commun 2017; 490:55-61. [PMID: 28595908 DOI: 10.1016/j.bbrc.2017.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/03/2017] [Indexed: 10/19/2022]
Abstract
To date the molecular mechanism of cardiac hypertrophy has not been completely elucidated. Since oxidized low-density lipoprotein (ox-LDL) is considered a risk marker for early ventricular remodeling, we speculated that ox-LDL may be related to cardiac hypertrophy. We observed the significantly upregulation of plasma ox-LDL and hypertrophic responses, such as cardiomyocyte size and specific gene expressions in Apo E-/- mice fed with high fat diet, accompanied by the upregulation of AT1-R and lectin-like oxidized low-density protein receptor 1 (LOX-1). Ox-LDL treatment with neonatal rat cardiomyocyte for 24 h significantly induced similar hypertrophic responses and also upregulation of AT1-R and LOX-1. The analysis of co-immunoprecipitation and the bimolecular fluorescence complementation assay proved that LOX-1 and AT1-R could directly bind together in the presence of ox-LDL, suggesting a critical role of the association between LOX-1 and AT1-R in ox-LDL-induced cardiac hypertrophy. Furthermore, we found that the AT1-R blocker Losartan and LOX-1 neutralizing antibody through inhibiting AT1-R or LOX-1 could both decline ox-LDL-induced hypertrophic responses whereas angiotensin converting enzyme inhibitor Enalapril only partially inhibited the responses stimulated by ox-LDL. These findings suggested that ox-LDL could induce cardiac hypertrophy through the direct association of AT1-R and LOX-1.
Collapse
Affiliation(s)
- Yunzi Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuqiu Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohui Ning
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Keping Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Domingues N, Estronca LMBB, Silva J, Encarnação MR, Mateus R, Silva D, Santarino IB, Saraiva M, Soares MIL, Pinho E Melo TMVD, Jacinto A, Vaz WLC, Vieira OV. Cholesteryl hemiesters alter lysosome structure and function and induce proinflammatory cytokine production in macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:210-220. [PMID: 27793708 DOI: 10.1016/j.bbalip.2016.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/13/2016] [Accepted: 10/24/2016] [Indexed: 12/29/2022]
Abstract
RATIONALE Cholesteryl hemiesters are oxidation products of polyunsaturated fatty acid esters of cholesterol. Their oxo-ester precursors have been identified as important components of the "core aldehydes" of human atheromata and in oxidized lipoproteins (Ox-LDL). We had previously shown, for the first time, that a single compound of this family, cholesteryl hemisuccinate (ChS), is sufficient to cause irreversible lysosomal lipid accumulation (lipidosis), and is toxic to macrophages. These features, coupled to others such as inflammation, are typically seen in atherosclerosis. OBJECTIVE To obtain insights into the mechanism of cholesteryl hemiester-induced pathological changes in lysosome function and induction of inflammation in vitro and assess their impact in vivo. METHODS AND RESULTS We have examined the effects of ChS on macrophages (murine cell lines and primary cultures) in detail. Specifically, lysosomal morphology, pH, and proteolytic capacity were examined. Exposure of macrophages to sub-toxic ChS concentrations caused enlargement of the lysosomes, changes in their luminal pH, and accumulation of cargo in them. In primary mouse bone marrow-derived macrophages (BMDM), ChS-exposure increased the secretion of IL-1β, TNF-α and IL-6. In zebrafish larvae (wild-type AB and PU.1:EGFP), fed with a ChS-enriched diet, we observed lipid accumulation, myeloid cell-infiltration in their vasculature and decrease in larval survival. Under the same conditions the effects of ChS were more profound than the effects of free cholesterol (FC). CONCLUSIONS Our data strongly suggest that cholesteryl hemiesters are pro-atherogenic lipids able to mimic features of Ox-LDL both in vitro and in vivo.
Collapse
Affiliation(s)
- Neuza Domingues
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal.
| | - Luís M B B Estronca
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - João Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Marisa R Encarnação
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal.
| | - Rita Mateus
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal.
| | - Diogo Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Inês B Santarino
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal.
| | - Margarida Saraiva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Maria I L Soares
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | | | - António Jacinto
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal.
| | - Winchil L C Vaz
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal.
| | - Otília V Vieira
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal.
| |
Collapse
|
7
|
Naringin inhibits lipopolysaccharide-induced damage in human umbilical vein endothelial cells via attenuation of inflammation, apoptosis and MAPK pathways. Cytotechnology 2016; 68:1473-87. [PMID: 27006302 DOI: 10.1007/s10616-015-9908-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/30/2015] [Indexed: 12/21/2022] Open
Abstract
Endothelial cell activation, injury and dysfunction have been regarded as one of the initial key events in the pathogenesis of atherosclerosis. Lipopolysaccharide (LPS), an important mediator of inflammation, can cause endothelial cell damage and apoptosis. Naringin (Nar), one major flavanone glycoside from citrus fruits, shows various pharmacological actions, but the effect of Nar on LPS-induced damage in human umbilical vein endothelial cells (HUVECs) remains unknown. The present results showed that Nar significantly improved the survival rate of HUVECs, and decreased reactive oxygen species and intracellular Ca(2+) levels caused by LPS compared with model group. In addition, Nar obviously decreased cytochrome c release from mitochondria into cytosol. Moreover, Nar significantly down-regulated the protein or mRNA levels of IL-1, IL-6, TNF-α, VCAM-1, ICAM-1, NF-κB, AP-1, cleaved-3,-7,-9, p53, Bak and Bax, and up-regulated the expressions of Bcl-xl, Bcl-2 to suppress inflammation and apoptosis. Furthermore, Nar obviously inhibited phosphorylation levels of JNK, ERK and p38 MAPK. In conclusion, Nar exhibited potent effects against LPS-induced damage in HUVECs through the modulation of oxidative stress, inflammation, apoptosis and MAPK pathways, which should be developed as a potent candidate for the treatment of atherosclerosis in the future.
Collapse
|
8
|
Aluganti Narasimhulu C, Fernandez-Ruiz I, Selvarajan K, Jiang X, Sengupta B, Riad A, Parthasarathy S. Atherosclerosis--do we know enough already to prevent it? Curr Opin Pharmacol 2016; 27:92-102. [PMID: 26974701 DOI: 10.1016/j.coph.2016.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 02/12/2016] [Indexed: 01/07/2023]
Abstract
In this review, we have briefly summarized the characteristics of lipids and lipoproteins and the atherosclerotic process. The development of atherosclerosis is a continuous process that involves numerous cellular and acellular processes that influence the behavior of each other. These include oxidative stress, lipoprotein modifications, macrophage polarization, macrophage lipid accumulation, generation of pro- and anti-inflammatory components, calcification, cellular growth and proliferation, and plaque rupture. The precise role(s) of many of these are unknown. Understanding the events at each particular stage might shed more light onto the process as a whole and could potentially reveal targets for intervention. Therapeutic modalities that work at one stage may have little to no influence on other stages of the disease.
Collapse
Affiliation(s)
| | - Irene Fernandez-Ruiz
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, United States
| | - Krithika Selvarajan
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, United States
| | - Xeuting Jiang
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, United States
| | - Bhaswati Sengupta
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, United States
| | - Aladdin Riad
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, United States
| | - Sampath Parthasarathy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, United States.
| |
Collapse
|
9
|
Kakino A, Fujita Y, Nakano A, Horiuchi S, Sawamura T. Developmental Endothelial Locus-1 (Del-1) Inhibits Oxidized Low-Density Lipoprotein Activity by Direct Binding, and Its Overexpression Attenuates Atherogenesis in Mice. Circ J 2016; 80:2541-2549. [DOI: 10.1253/circj.cj-16-0808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Akemi Kakino
- Institute for Biomedical Sciences, Shinshu University
- Department of Physiology, School of Medicine, Shinshu University
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center
| | - Yoshiko Fujita
- Department of Physiology, School of Medicine, Shinshu University
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center
| | - Atsushi Nakano
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center
| | - Sayaka Horiuchi
- Department of Physiology, School of Medicine, Shinshu University
| | - Tatsuya Sawamura
- Department of Physiology, School of Medicine, Shinshu University
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center
| |
Collapse
|
10
|
Dietary cladode powder from wild type and domesticated Opuntia species reduces atherogenesis in apoE knock-out mice. J Physiol Biochem 2015; 72:59-70. [DOI: 10.1007/s13105-015-0461-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
|
11
|
[Lp-PLA2, a biomarker of vascular inflammation and vulnerability of atherosclerosis plaques]. ANNALES PHARMACEUTIQUES FRANÇAISES 2015; 74:190-7. [PMID: 26499399 DOI: 10.1016/j.pharma.2015.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 09/09/2015] [Indexed: 01/21/2023]
Abstract
A chronic inflammation is involved in various stages of development of the atherosclerotic plaques. Among the emerging biomarkers of atherogenesis, the lipoprotein-associated phospholipase A2 (Lp-PLA2), formerly known as PAF-acetylhydrolase (McIntyre et al., 2009), hydrolyses the oxidized short chain phospholipids of low-density lipoproteins (LDL), thereby releasing pro-inflammatory mediators (lysophospholipids and oxidized fatty acids). Lp-PLA2, produced by monocytes/macrophages and T-lymphocytes, and mainly associated with LDL (Gazi et al., 2005), is predominantly expressed in the necrotic center of the atherosclerotic plaques and in the macrophage-rich areas (Kolodgie et al., 2006). It would have a predictive role of cardiovascular (CV) events in relation to the vulnerability of atherosclerotic plaques. Determination of Lp-PLA2 has been proposed in the assessment of the CV risk, to ensure a better stratification of populations at intermediate risk for targeted therapy (Davidson et al., 2008). Its proatherogenic role suggested that inhibition of its activity could ensure a better vascular protection in combination with cholesterol-lowering agents. Nevertheless, Lp-PLA2 is not yet a fully validated marker for use in daily clinical practice, especially since the studies using an inhibitor of Lp-PLA2 (darapladib) (STABILITY Investigators et al., 2014; O'Donoghue et al., 2014) did not show any reduction in coronary events. Lp-PLA2 could have a site-specific role in plaque inflammation and development (Fenning et al., 2015). High Lp-PLA2 activity could reflect a response to pro-inflammatory stress characteristic of atherosclerosis (Marathe et al., 2014). This presentation aims at clarifying the involvement of Lp-PLA2 in the pathophysiology of atherosclerosis, and at assessing its interest both as a biomarker for the onset of CV events and as a therapeutic target.
Collapse
|
12
|
Antiatherogenic and antitumoral properties of Opuntia cladodes: inhibition of low density lipoprotein oxidation by vascular cells, and protection against the cytotoxicity of lipid oxidation product 4-hydroxynonenal in a colorectal cancer cellular model. J Physiol Biochem 2015; 71:577-87. [DOI: 10.1007/s13105-015-0408-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/25/2015] [Indexed: 02/02/2023]
|
13
|
In vitro anti-Plasmodium falciparum properties of the full set of human secreted phospholipases A2. Infect Immun 2015; 83:2453-65. [PMID: 25824843 DOI: 10.1128/iai.02474-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 03/25/2015] [Indexed: 01/23/2023] Open
Abstract
We have previously shown that secreted phospholipases A2 (sPLA2s) from animal venoms inhibit the in vitro development of Plasmodium falciparum, the agent of malaria. In addition, the inflammatory-type human group IIA (hGIIA) sPLA2 circulates at high levels in the serum of malaria patients. However, the role of the different human sPLA2s in host defense against P. falciparum has not been investigated. We show here that 4 out of 10 human sPLA2s, namely, hGX, hGIIF, hGIII, and hGV, exhibit potent in vitro anti-Plasmodium properties with half-maximal inhibitory concentrations (IC50s) of 2.9 ± 2.4, 10.7 ± 2.1, 16.5 ± 9.7, and 94.2 ± 41.9 nM, respectively. Other human sPLA2s, including hGIIA, are inactive. The inhibition is dependent on sPLA2 catalytic activity and primarily due to hydrolysis of plasma lipoproteins from the parasite culture. Accordingly, purified lipoproteins that have been prehydrolyzed by hGX, hGIIF, hGIII, and hGV are more toxic to P. falciparum than native lipoproteins. However, the total enzymatic activities of human sPLA2s on purified lipoproteins or plasma did not reflect their inhibitory activities on P. falciparum. For instance, hGIIF is 9-fold more toxic than hGV but releases a lower quantity of nonesterified fatty acids (NEFAs). Lipidomic analyses of released NEFAs from lipoproteins demonstrate that sPLA2s with anti-Plasmodium properties are those that release polyunsaturated fatty acids (PUFAs), with hGIIF being the most selective enzyme. NEFAs purified from lipoproteins hydrolyzed by hGIIF were more potent at inhibiting P. falciparum than those from hGV, and PUFA-enriched liposomes hydrolyzed by sPLA2s were highly toxic, demonstrating the critical role of PUFAs. The selectivity of sPLA2s toward low- and high-density (LDL and HDL, respectively) lipoproteins and their ability to directly attack parasitized erythrocytes further explain their anti-Plasmodium activity. Together, our findings indicate that 4 human sPLA2s are active against P. falciparum in vitro and pave the way to future investigations on their in vivo contribution in malaria pathophysiology.
Collapse
|
14
|
Orsó E, Matysik S, Grandl M, Liebisch G, Schmitz G. Human native, enzymatically modified and oxidized low density lipoproteins show different lipidomic pattern. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:299-306. [PMID: 25583048 DOI: 10.1016/j.bbalip.2015.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 12/23/2014] [Accepted: 01/03/2015] [Indexed: 11/26/2022]
Abstract
In the present paper we have performed comparative lipidomic analysis of two prototypic atherogenic LDL modifications, oxidized LDL and enzymatically modified LDL. Oxidization of LDL was carried out with different chemical modifications starting from the same native LDL preparations: (i) by copper oxidation leading to terminally oxidized LDL (oxLDL), (ii) by moderate oxidization with HOCl (HOCl LDL), (iii) by long term storage of LDL at 4°C to produce minimally modified LDL (mmLDL), or (iv) by 15-lipoxygenase, produced by a transfected fibroblast cell line (LipoxLDL). The enzymatic modification of LDL was performed by treatment of native LDL with trypsin and cholesteryl esterase (eLDL). Free cholesterol (FC) and cholesteryl esters (CE) represent the predominant lipid classes in all LDL preparations. In contrast to native LDL, which contains about two-thirds of total cholesterol as CE, enzymatic modification of LDL decreased the proportion of CE to about one-third. Free cholesterol and CE in oxLDL are reduced by their conversion to oxysterols. Oxidization of LDL preferentially influences the content of polyunsaturated phosphatidylcholine (PC) and polyunsaturated plasmalogen species, by reducing the total PC fraction in oxLDL. Concomitantly, a strong rise of the lysophosphatidylcholine (LPC) fraction can be found in oxLDL as compared to native LDL. This effect is less pronounced in eLDL. The mild oxidation of LDL with hypochlorite and/or lipoxygenase does not alter the content of the analyzed lipid classes and species in a significant manner. The lipidomic characterization of modified LDLs contributes to the better understanding their diverse cellular effects.
Collapse
Affiliation(s)
- Evelyn Orsó
- University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Silke Matysik
- University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Margot Grandl
- University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Gerhard Liebisch
- University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Gerd Schmitz
- University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
15
|
Huh GW, Park JH, Kang JH, Jeong TS, Kang HC, Baek NI. Flavonoids from Lindera glauca Blume as low-density lipoprotein oxidation inhibitors. Nat Prod Res 2014; 28:831-4. [DOI: 10.1080/14786419.2013.879583] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Gyu-Won Huh
- The Graduate School of Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Ji-Hae Park
- The Graduate School of Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Ji-Hyun Kang
- National Research Laboratory of Lipid Metabolism & Atherosclerosis, KRIBB, Daejeon 305-806, Republic of Korea
| | - Tae-Sook Jeong
- National Research Laboratory of Lipid Metabolism & Atherosclerosis, KRIBB, Daejeon 305-806, Republic of Korea
| | | | - Nam-In Baek
- The Graduate School of Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University, Yongin 446-701, Republic of Korea
| |
Collapse
|
16
|
Niki E. Biomarkers of lipid peroxidation in clinical material. Biochim Biophys Acta Gen Subj 2014; 1840:809-17. [DOI: 10.1016/j.bbagen.2013.03.020] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/14/2013] [Accepted: 03/17/2013] [Indexed: 11/28/2022]
|
17
|
Giordano E, Visioli F. Long-chain omega 3 fatty acids: molecular bases of potential antioxidant actions. Prostaglandins Leukot Essent Fatty Acids 2014; 90:1-4. [PMID: 24345866 DOI: 10.1016/j.plefa.2013.11.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 12/20/2022]
Abstract
Several lines of investigation are being developed to assess the impact of polyunsaturated fatty acids, namely those of the omega 3 series, intake on oxidative stress. Keeping in mind that there might be a dose-response relation, in vivo and in vitro data strongly suggest that omega 3 fatty acids might act as anti- rather than pro-oxidant in several cells such as vascular cells, hence diminishing inflammation, oxidative stress, and, in turn, the risk of atherosclerosis and degenerative disorders such as cardiovascular disease.
Collapse
Affiliation(s)
- Elena Giordano
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, Madrid, Spain
| | - Francesco Visioli
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, Madrid, Spain.
| |
Collapse
|
18
|
Babakr AT, Elsheikh OM, Almarzouki AA, Assiri AM, Abdalla BEE, Zaki HY, Fatani SH, NourEldin EM. Relationship between oxidized low-density lipoprotein antibodies and obesity in different glycemic situations. Diabetes Metab Syndr Obes 2014; 7:513-20. [PMID: 25368528 PMCID: PMC4216034 DOI: 10.2147/dmso.s70904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Autoantibodies to oxidized low-density lipoprotein (oxLDL) are a heterogeneous group of antibodies that are controversially discussed to be either pathogenic or protective. Biochemical and anthropometric measurements correlated with increased levels of these antibodies are also controversial, especially in conditions of impaired glucose tolerance and type 2 diabetes mellitus. The present study was conducted to evaluate levels of oxLDL antibodies and their correlation with obesity in different glycemic situations. METHODS Two hundred and seventy-four adult males were classified into three subgroups: group 1 (n=125), comprising a control group of nondiabetic subjects; group 2 (n=77), comprising subjects with impaired glucose tolerance; and group 3 (n=72), comprising patients with type 2 diabetes mellitus. Body mass index was calculated, and measurement of oxLDL and oxLDL antibodies was performed. RESULTS Higher mean concentrations of oxLDL were found in the type 2 diabetes mellitus and impaired glucose tolerance groups (143.5±21.9 U/L and 108.7±23.7 U/L, respectively). The mean value for the control group was 73.5±27.5 U/L (P<0.001). Higher mean concentrations of anti-oxLDL antibodies were observed in the type 2 diabetes mellitus and impaired glucose tolerance groups (55.7±17.8 U/L and 40.4±17.6 U/L, respectively). The mean value for the control group was 20.4±10 U/L (P<0.001). Levels of anti-oxLDL antibodies were found to be positively and significantly correlated with body mass index in the control group (r=0.46), impaired glucose tolerance (r=0.51), type 2 diabetes mellitus group (r=0.46), and in the whole study population (r=0.44; P<0.001). CONCLUSION Anti-oxLDL antibody levels were increased in subjects with type 2 diabetes mellitus and impaired glucose tolerance and were positively correlated with obesity and body mass index.
Collapse
Affiliation(s)
- Abdullatif Taha Babakr
- Department of Medical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
- Correspondence: Abdullatif Taha Babakr, Department of Medical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Abdia, Makkah, Kingdom of Saudi Arabia, Tel +966 2527 0000 ext 4322, Fax +966 2527 0000 ext 4319, Email
| | - Osman Mohamed Elsheikh
- Department of Biochemistry, Faculty of Medicine, International University of Africa, Khartoum, Sudan
| | - Abdullah A Almarzouki
- Department of Internal Medicine, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Adel Mohamed Assiri
- Department of Medical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Badr Eldin Elsonni Abdalla
- Department of Biochemistry, Sciences Faculty for Girls, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Hani Yousif Zaki
- Department of Biochemistry and Nutrition, Faculty of Medicine, University of Gezira, Sudan
| | - Samir H Fatani
- Department of Medical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - EssamEldin Mohamed NourEldin
- Department of Medical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| |
Collapse
|
19
|
Resveratrol protects HUVECs from oxidized-LDL induced oxidative damage by autophagy upregulation via the AMPK/SIRT1 pathway. Cardiovasc Drugs Ther 2013; 27:189-98. [PMID: 23358928 DOI: 10.1007/s10557-013-6442-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Resveratrol could induce basal autophagy through the activation of sirtuin. In this study, we investigated the effect of resveratrol on oxidative injury of human umbilical endothelial vein cells (HUVECs) induced by oxidized low-density lipoprotein (ox-LDL) and the role of autophagy in this effect. METHODS HUVECs were exposed to 100 mg/L ox-LDL for 24 h to cause oxidative injury. The effect of different concentrations of resveratrol on oxidative damage in HUVECs treated with ox-LDL was evaluated by MTT assay and superoxide dismutase (SOD) activity test. The autophagic level in different groups was measured by the protein expression of microtubule-associated protein 1 light chain 3 (LC3) and sequestosome 1 (SQSTM1/P62). Autophagosomes were observed under electron microscope and fluorescence microscope (by MDC staining). The expression of silencing information regulator1 (Sirt1) and AMP activated protein kinaseα1 (AMPK) was investigated by Western blot. Autophagy inhibitor 3-methyladenine (3-MA) and Sirt1 inhibitor 6-Chloro-2,3,4,9-tetrahydro-1H-Carbazole-1-carboxamide (EX527) were used to confirm the role of autophagy in this effect of resveratrol and the pathway involved. RESULTS Resveratrol reversed the decreases in cell viability (72.9 ± 1.7 % of the control group) and SOD activity (14.37 ± 0.21 U/ml) caused by ox-LDL at 83.4 ± 1.4 % of the control group and 16.41 ± 0.27 U/ml respectively. This effect accompanied by upregulation of autophagy and increased protein expression of Sirt1 and AMPK phosphorylation on threonine 172 (p-AMPK). Both 3-MA and EX527 abolished the protective effect of resveratrol in cell viability, at 80.4 ± 2.7 % and 73.9 ± 1.1 % of the control group respectively. 3-MA inhibited autophagy activation without any change of Sirt1 expression at both the mRNA and protein level. EX527 suppressed the expression of Sirt1 and diminished the upregulation of autophagy. Addition of 3-MA or EX527 could not affect the protein level of p-AMPK. CONCLUSION Resveratrol protected HUVECs from oxidative damage caused by ox-LDL. This effect was mediated by Sirt1-dependent autophagy via the AMPK/ Sirt1 pathway.
Collapse
|
20
|
Cazzola R, Cassani E, Barichella M, Cestaro B. Impaired fluidity and oxidizability of HDL hydrophobic core and amphipathic surface in dyslipidemic men. Metabolism 2013; 62:986-91. [PMID: 23414907 DOI: 10.1016/j.metabol.2013.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To examine and compare the composition, fluidity and oxidizability of HDL hydrophobic core and amphipathic surface of two groups of adult males (25kg/m²<BMI<30kg/m²), the former mixed dyslipidemic patients (MD) and the latter age- and BMI-matched healthy controls. METHODS AND RESULTS Pyrenyl-cholesteryl ester and pyrenyl-phosphatidylcholine, respectively incorporated in HDL core or surface were used for measuring both 2,2'-azobis-2-methyl-propanimidamide-dihydrochloride-induced peroxidation kinetics and fluidities of these regions. In comparison with the controls, MD HDL showed: a) higher free cholesterol to phospholipid ratio in surface and triacylglycerols to cholesteryl ester ratio in the core, b) higher malondialdehyde levels and lower alpha-tocopherol and beta-carotene to neutral lipid ratios, c) a more rigid surface and more fluid core, d) dramatically decreased lag-time and increased propagation rate of peroxidation kinetic in the core, but only an increased propagation rate on the surface. CONCLUSION These results suggest that better knowledge of the physical-chemical properties and oxidizability of HDL core and surface could contribute to better understanding of the mechanisms connecting HDL alteration to increased risk of CDV in MD.
Collapse
Affiliation(s)
- Roberta Cazzola
- Department of Biomedical and Clinical Sciences L. Sacco-Faculty of Medicine and Surgery-University of Milan, Via G. B. Grassi, 74 - 20157 Milan, Italy.
| | | | | | | |
Collapse
|
21
|
Almario RU, Karakas SE. Lignan Content of the Flaxseed Influences Its Biological Effects in Healthy Men and Women. J Am Coll Nutr 2013; 32:194-9. [DOI: 10.1080/07315724.2013.791147] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Westhaus S, Bankwitz D, Ernst S, Rohrmann K, Wappler I, Agné C, Luchtefeld M, Schieffer B, Sarrazin C, Manns MP, Pietschmann T, Ciesek S, von Hahn T. Characterization of the inhibition of hepatitis C virus entry by in vitro-generated and patient-derived oxidized low-density lipoprotein. Hepatology 2013; 57:1716-24. [PMID: 23212706 DOI: 10.1002/hep.26190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 12/14/2022]
Abstract
UNLABELLED Oxidized low-density lipoprotein (oxLDL) has been reported as an inhibitor of hepatitis C virus (HCV) cell entry, making it the only known component of human lipid metabolism with an antiviral effect on HCV. However, several questions remain open, including its effect on full-length cell-culture-grown HCV (HCVcc) of different genotypes or on other steps of the viral replication cycle, its mechanism of action, and whether endogenous oxLDL shares the anti-HCV properties of in vitro-generated oxLDL. We combined molecular virology tools with oxLDL serum measurements in different patient cohorts to address these questions. We found that oxLDL inhibits HCVcc at least as potently as HCV pseudoparticles. There was moderate variation between genotypes, with genotype 4 appearing the most oxLDL sensitive. Intracellular RNA replication and assembly and release of new particles were unaffected. HCV particles entering target cells lost oxLDL sensitivity with time kinetics parallel to anti-SR-BI (scavenger receptor class B type I), but significantly earlier than anti-CD81, suggesting that oxLDL acts by perturbing interaction between HCV and SR-BI. Finally, in chronically HCV-infected individuals, endogenous serum oxLDL levels did not correlate with viral load, but in HCV-negative sera, high endogenous oxLDL had a negative effect on HCV infectivity in vitro. CONCLUSION oxLDL is a potent pangenotype HCV entry inhibitor that maintains its activity in the context of human serum and targets an early step of HCV entry.
Collapse
Affiliation(s)
- Sandra Westhaus
- Institute for Molecular Biology, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|