1
|
Chen S, Niu Z, Shen Y, Lu W, Zhao J, Yang H, Guo M, Zhang L, Zheng R, Du G, Li L. Naodesheng decoction regulating vascular function via G-protein-coupled receptors: network analysis and experimental investigations. Front Pharmacol 2024; 15:1355169. [PMID: 38533257 PMCID: PMC10963398 DOI: 10.3389/fphar.2024.1355169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction: Ischemic stroke (IS) is a detrimental neurological disease with limited treatment options. Recanalization of blocked blood vessels and restoring blood supply to ischemic brain tissue are crucial for post-stroke rehabilitation. The decoction Naodesheng (NDS) composed of five Chinese botanical drugs, including Panax notoginseng (Burk.) F. H. Chen, Ligusticum chuanxiong Hort., Carthamus tinctorius L., Pueraria lobata (Willd.) Ohwi, and Crataegus pinnatifida Bge., is a blood-activating and stasis-removing herbal medicine commonly used for the clinical treatment of cerebrovascular diseases in China. However, the material basis of NDS on the effects of blood circulation improvement and vascular tone regulation remains unclear. Methods: A database comprising 777 chemical metabolites of NDS was constructed. Then, the interactions between various herbal metabolites of NDS and five vascular tone modulation G-protein-coupled receptors (GPCRs), including 5-HT1AR, 5-HT1BR, β2-AR, AT1R, and ETBR, were assessed by molecular docking. Using network analysis and vasomotor experiment of the cerebral basilar artery, the potential material basis underlying the vascular regulatory effects of NDS was further explored. Results: The Naodesheng Effective Component Group (NECG) was found to induce relaxation of rat basilar artery rings precontracted using Endothelin-1 (ET-1) and KCl in vitro in a dose-dependent manner. Several metabolites of NDS, including C. tinctorius, C. pinnatifida, and P. notoginseng, were found to be the main plant resources of metabolites with high docking scores. Furthermore, several metabolites in NDS, including formononetin-7-glucoside, hydroxybenzoyl-coumaric anhydride, methoxymecambridine, puerarol, and pyrethrin II, were found to target multiple vascular GPCRs. Metabolites with moderate-to-high binding energy were verified to have good rat basilar artery-relaxing effects, and the maximum artery relaxation effects of all three metabolites, namely, isorhamnetin, kaempferol, and daidzein, were found to exceed 90%. Moreover, metabolites of NDS were found to exert a synergistic effect by interacting with vascular GPCR targets, and these metabolites may contribute to the cerebrovascular regulatory function of NDS. Discussion: The study reports that various metabolites of NDS contribute to its vascular tone regulating effects and demonstrates the multi-component and multi-target characteristics of NDS. Among them, metabolites with moderate-to-high binding scores in NDS may play an important role in regulating vascular function.
Collapse
Affiliation(s)
- Shuhan Chen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziran Niu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanjia Shen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wendan Lu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaying Zhao
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huilin Yang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minmin Guo
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zhang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruifang Zheng
- Xinjiang Key Laboratory of Uygur Medicine, Xinjiang Institute of Materia Medica, Urumqi, Xinjiang, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Li
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Li WJ, Cai YF, Ouyang Y, Li XY, Shi XL, Cao SX, Huang Y, Wu HW, Yang HJ. Quality evaluation of Angelica Sinensis Radix dispensing granules by integrating microvascular activity and chemical analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117236. [PMID: 37769884 DOI: 10.1016/j.jep.2023.117236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a new form of crude slices of traditional Chinese medicine (TCM), traditional Chinese medicine dispensing granules (TCMDGs) have been used for clinical formula. It is necessary to evaluate whether the chemical composition and biological activity are consistent among the different batches. Angelica Sinensis Radix (ASR), the root of Angelica sinensis (Oliv.) Diels, is one of the most frequently used medicinal materials in gynecology, senile and cardiovascular diseases. In this paper, the quality of TCMDGs is examined taking the Angelica Sinensis Radix dispensing granules (ASRDGs) as a typical case. AIM OF THE STUDY In this study, integrating bioequivalence and chemical analysis was used to evaluate the quality of dispensing granules taking ASRDGs as a typical case. MATERIALS AND METHODS According to the clinical efficacy of ASR, the intestinal absorption liquid of ASRDGs (IAL-ASRDGs) in 15 batches prepared by the everted gut sac (EGS) method was used to evaluate its effects of vasodilatation on isolated vascular rings. Then, the chemical profiling analysis of IAL-ASRDGs from the 15 batches was carried out by ultra-high performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry (UPLC-Q-TOF-MS). The components in IAL-ASRDGs were identified using mass spectrometry data and the obtained reference standards. Pearson correlation analysis was further performed for the selection of quality control markers based on the extracted ion chromatograms of the identified compounds and vasodilatory activities of different batches of IAL-ASRDGs. Moreover, the selected chemical components in ASRDGs were further verified by vasodilatory activities and quantitatively analyzed by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-QQQ-MS). RESULTS The IAL-ASRDGs showed favorable vasodilatory activities. There were significant differences among the 15 batches. The ranges of maximum vasodilation rate (%) and EC50 were 69.33 ± 7.16 to 19.52 ± 5.05 and 0.07-25.58 g raw materials/mL, respectively. A total of 46 compounds in IAL-ASRDGs were identified based on accurate mass measurements, fragmentation behavior and the reference standards. Among them, 8 compounds including butylidenephthalide, butylphthalide and senkyunolide A showed positive correlation with vasodilatory effect of IAL-ASRDGs. The 8 compounds were further verified, showing obvious vasodilatory activities. The content of the 8 compounds also showed some differences in 15 batches of ASRDGs. Among them, the content of ferulic acid, senkyunolide I and senkyunolide H varied the most in different batches of ASRDGs. By Pearson correlation analysis, the total content of senkyunolides (senkyunolide A, senkyunolide I and senkyunolide H) in ASRDGs was found to reflect the vasodilatory activity of ASRDGs mostly. CONCLUSION This study provides new strategies for the quality assessment by bioequivalence and explore the chemical quality control markers for ASRDGs.
Collapse
Affiliation(s)
- Wen-Jie Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yu-Feng Cai
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yi Ouyang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xian-Yu Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Beijing, 100700, China.
| | - Xiao-Lu Shi
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Beijing, 100700, China.
| | - Sheng-Xuan Cao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ying Huang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Beijing, 100700, China
| | - Hong-Wei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hong-Jun Yang
- China Academy of Chinese Medical Sciences, Beijing, 100700, China; Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Beijing, 100700, China.
| |
Collapse
|
3
|
Xiaoxuming Decoction Regulates Vascular Function by Modulating G Protein-Coupled Receptors: A Molecular Docking Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5575443. [PMID: 34195269 PMCID: PMC8203363 DOI: 10.1155/2021/5575443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/03/2021] [Accepted: 05/28/2021] [Indexed: 01/13/2023]
Abstract
Xiaoxuming decoction (XXMD) is a traditional Chinese herbal medicine (CHM) that is used for the treatment of stroke in China. Stroke injury damages the cerebral vasculature and disrupts the autoregulation of vasoconstriction and vasodilatation, which is crucial for maintaining constant cerebral blood flow (CBF). It has been reported that XXMD exerts a positive effect on cerebral circulation in animal models of stroke. However, the mechanisms underlying the regulatory effect of XXMD on vascular tone, and the interactions among the multiple components of XXMD, remain unclear. In this study, XXMD was found to induce relaxation of the basilar artery rings of rats precontracted by 5-hydroxytryptamine (5-HT) in vitro, in a dose-dependent manner. The modulation of vascular tone and the process of cerebral ischemia are mediated via the interactions between G protein-coupled receptors (GPCRs) and their ligands, including 5-HT, angiotensin II (Ang II), and urotensin II (UII). Thus, the potential synergistic effects of the different components of XXMD on the regulation of vasoconstriction and vasodilation were further investigated by molecular docking based on network pharmacology. We constructed and analyzed a database comprising 963 compounds of XXMD and studied the interactions between five vascular GPCRs (5-HT1A receptor (5-HT1AR), 5-HT1B receptor (5-HT1BR), Ang II type 1 receptor (AT1R), beta 2-adrenergic receptor (β2-AR), and UII receptor (UTR)) and the various herbal constituents of XXMD using molecular docking. By constructing and analyzing the compound-target networks of XXMD, we found that Glycyrrhizae Radix et Rhizoma, Ginseng Radix et Rhizoma, and Paeoniae Radix Alba were the three major herbs that contained a large number of compounds with high docking scores. We additionally observed that several constituents of XXMD, including gallotannin, liquiritin apioside, nariutin, 1,2,3,4,6-pentagalloylglucose, folic acid, and ginsenoside Rb1, targeted multiple vascular GPCRs. Moreover, the interactions between the components of XXMD and the targets related to vascular tone constituted the comprehensive cerebrovascular regulatory function of XXMD and provided a material basis of the vasoregulatory function of XXMD. The study reports the contributions of various components of XXMD to the regulatory effects on vascular tone and provides scientific evidence for the multicomponent and multitargeting characteristics of XXMD.
Collapse
|
4
|
Enhanced cutaneous Rock2 expression as a marker of Rho Kinase pathway activation in autoimmune disease and Kohlemeier-Degos disease. Ann Diagn Pathol 2020; 44:151414. [DOI: 10.1016/j.anndiagpath.2019.151414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 11/22/2022]
|
5
|
Prenatal hypoxia affected endothelium-dependent vasodilation in mesenteric arteries of aged offspring via increased oxidative stress. Hypertens Res 2019; 42:863-875. [DOI: 10.1038/s41440-018-0181-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 12/27/2022]
|
6
|
Xia Y, Khalil RA. Pregnancy-associated adaptations in [Ca2+]i-dependent and Ca2+ sensitization mechanisms of venous contraction: implications in pregnancy-related venous disorders. Am J Physiol Heart Circ Physiol 2016; 310:H1851-65. [PMID: 27199130 DOI: 10.1152/ajpheart.00876.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/26/2016] [Indexed: 11/22/2022]
Abstract
Pregnancy is associated with significant adaptations in the maternal hemodynamics and arterial circulation, but the changes in the venous mechanisms during pregnancy are less clear. We hypothesized that pregnancy is associated with alterations in venous function, intracellular free Ca(2+) concentration ([Ca(2+)]i), and Ca(2+)-dependent mechanisms of venous contraction. Circular segments of inferior vena cava (IVC) from virgin and late pregnant (Preg, day 19) Sprague-Dawley rats were suspended between two hooks, labeled with fura-2, and placed in a cuvet inside a spectrofluorometer for simultaneous measurement of contraction and [Ca(2+)]i (fura-2 340/380 ratio). KCl (96 mM), which stimulates Ca(2+) influx, caused less contraction (35.6 ± 6.3 vs. 92.6 ± 19.9 mg/mg tissue) and smaller increases in [Ca(2+)]i (1.67 ± 0.12 vs. 2.19 ± 0.11) in Preg vs. virgin rat IVC. The α-adrenergic receptor agonist phenylephrine (Phe; 10(-5) M) caused less contraction (23.8 ± 3.4 vs. 70.9 ± 12.9 mg/mg tissue) and comparable increases in [Ca(2+)]i (1.76 ± 0.10 vs. 1.89 ± 0.08) in Preg vs. virgin rat IVC. At increasing extracellular Ca(2+) concentrations ([Ca(2+)]e) (0.1, 0.3, 0.6, 1, and 2.5 mM), KCl and Phe induced [Ca(2+)]e-contraction and [Ca(2+)]e-[Ca(2+)]i curves that were reduced in Preg vs. virgin IVC, supporting reduced Ca(2+) entry mechanisms. The [Ca(2+)]e-contraction and [Ca(2+)]e-[Ca(2+)]i curves were used to construct the [Ca(2+)]i-contraction relationship. Despite reduced contraction and [Ca(2+)]i in Preg IVC, the Phe-induced [Ca(2+)]i-contraction relationship was greater than that of KCl and was enhanced in Preg vs. virgin IVC, suggesting parallel activation of Ca(2+)-sensitization pathways. The Ca(2+) channel blocker diltiazem, protein kinase C (PKC) inhibitor GF-109203X, and Rho-kinase (ROCK) inhibitor Y27632 inhibited KCl- and Phe-induced contraction and abolished the shift in the Phe [Ca(2+)]i-contraction relationship in Preg IVC, suggesting an interplay between the decrease in Ca(2+) influx and possible compensatory activation of PKC- and ROCK-mediated Ca(2+)-sensitization pathways. The reduced [Ca(2+)]i and [Ca(2+)]i-dependent contraction in Preg rat IVC, despite the parallel rescue activation of Ca(2+)-sensitization pathways, suggests that the observed reduction in [Ca(2+)]i-dependent contraction mechanisms is likely underestimated, and that the veins without the rescue Ca(2+)-sensitization pathways could be even more prone to dilation during pregnancy. These pregnancy-associated reductions in Ca(2+) entry-dependent mechanisms of venous contraction, if occurring in human lower extremity veins and if not adequately compensated by Ca(2+)-sensitization pathways, may play a role in pregnancy-related venous disorders.
Collapse
Affiliation(s)
- Yin Xia
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and Department of General Surgery, Fuzhou General Hospital, Fuzhou, Fujian, P. R. China
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
7
|
Yuan TY, Chen YC, Zhang HF, Li L, Jiao XZ, Xie P, Fang LH, Du GH. DL0805-2, a novel indazole derivative, relaxes angiotensin II-induced contractions of rat aortic rings by inhibiting Rho kinase and calcium fluxes. Acta Pharmacol Sin 2016; 37:604-16. [PMID: 27041459 DOI: 10.1038/aps.2015.161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 12/25/2015] [Indexed: 12/30/2022] Open
Abstract
AIM DL0805-2 [N-(1H-indazol-5-yl)-1-(4-methylbenzyl) pyrrolidine-3-carboxamide] is a DL0805 derivative with more potent vasorelaxant activity and lower toxicity. This study was conducted to investigate the vasorelaxant mechanisms of DL0805-2 on angiotensin II (Ang II)-induced contractions of rat thoracic aortic rings in vitro. METHODS Rat thoracic aortic rings and rat aortic vascular smooth muscle cells (VSMCs) were pretreated with DL0805-2, and then stimulated with Ang II. The tension of the aortic rings was measured through an isometric force transducer. Ang II-induced protein phosphorylation, ROS production and F-actin formation were assessed with Western blotting and immunofluorescence assays. Intracellular free Ca(2+) concentrations were detected with Fluo-3 AM. RESULTS Pretreatment with DL0805-2 (1-100 μmol/L) dose-dependently inhibited the constrictions of the aortic rings induced by a single dose of Ang II (10(-7) mol/L) or accumulative addition of Ang II (10(-10)-10(-7) mol/L). The vasodilatory effect of DL0805-2 was independent of endothelium. In the aortic rings, pretreatment with DL0805-2 (1, 3, and 10 μmol/L) suppressed Ang II-induced Ca(2+) influx and intracellular Ca(2+) mobilization, and Ang II-induced phosphorylation of two substrates of Rho kinase (MLC and MYPT1). In VSMCs, pretreatment with DL0805-2 (1, 3, and 10 μmol/L) also suppressed Ang II-induced Ca(2+) fluxes and phosphorylation of MLC and MYPT1. In addition, pretreatment with DL0805-2 attenuated ROS production and F-actin formation in the cells. CONCLUSION DL0805-2 exerts a vasodilatory action in rat aortic rings through inhibiting the Rho/ROCK pathway and calcium fluxes.
Collapse
|
8
|
Yan Y, Chen YC, Lin YH, Guo J, Niu ZR, Li L, Wang SB, Fang LH, Du GH. Brazilin isolated from the heartwood of Caesalpinia sappan L induces endothelium-dependent and -independent relaxation of rat aortic rings. Acta Pharmacol Sin 2015; 36:1318-26. [PMID: 26564314 DOI: 10.1038/aps.2015.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/29/2015] [Indexed: 12/22/2022] Open
Abstract
AIM Brazilin is one of the major constituents of Caesalpinia sappan L with various biological activities. This study sought to investigate the vasorelaxant effect of brazilin on isolated rat thoracic aorta and explore the underlying mechanisms. METHODS Endothelium-intact and -denuded aortic rings were prepared from rats. The tension of the preparations was recorded isometrically with a force displacement transducer connected to a polygraph. The phosphorylation levels of ERK1/2 and myosin light chain (MLC) were analyzed using Western blotting assay. RESULTS Application of brazilin (10-100 μmol/L) dose-dependently relaxed the NE- or high K(+)-induced sustained contraction of endothelium-intact aortic rings (the EC50 was 83.51±5.6 and 79.79±4.57 μmol/L, respectively). The vasorelaxant effect of brazilin was significantly attenuated by endothelium removal or by pre-incubation with L-NAME, methylene blue or indomethacin. In addition, pre-incubation with brazilin dose-dependently attenuated the vasoconstriction induced by KCl, NE or Ang II. Pre-incubation with brazilin also markedly suppressed the high K(+)-induced extracellular Ca(2+) influx and NE-induced intracellular Ca(2+) release in endothelium-denuded aortic rings. Pre-incubation with brazilin dose-dependently inhibited the NE-stimulated phosphorylation of ERK1/2 and MLC in both endothelium-intact and -denuded aortic rings. CONCLUSION Brazilin induces relaxation in rat aortic rings via both endothelium-dependent and -independent ways as well as inhibiting NE-stimulated phosphorylation of ERK1/2 and MLC. Brazilin also attenuates vasoconstriction via blocking voltage- and receptor-operated Ca(2+) channels.
Collapse
|