1
|
Tavares WR, Seca AML, Barreto MC. Exploring the Therapeutic Potential of Artemisia and Salvia Genera in Cancer, Diabetes, and Cardiovascular Diseases: A Short Review of Clinical Evidence. J Clin Med 2025; 14:1028. [PMID: 39941696 PMCID: PMC11818717 DOI: 10.3390/jcm14031028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Metabolic syndrome, a cluster of metabolic disorders comprising dyslipidemia, insulin resistance, elevated blood pressure, and abdominal obesity, is a silent epidemic that may lead to outcomes such as cardiovascular disease, diabetes, and cancer. Due to the increase in the prevalence of these pathologies, the search for better treatments and more efficient drugs is imperative. Species of Artemisia and Salvia genera are excellent examples of noteworthy sources of bioactive products with health applications, their therapeutic properties being well known both in popular medicine and in the scientific community. There are reports of plant extracts or compounds from species belonging to either of these genera, which were able to combat cancer, diabetes, and cardiovascular pathologies. For instance, dihydroartemisinin (analog of artemisin extracted from Artemisia annua L.) can reduce tumor markers p53 and Ki-67 expression levels, leading to a reduction in tumor proliferation. Salvia officinalis L. has antihyperglycemic and lipid profile-improving effects since it decreases total cholesterol, glycosylated hemoglobin, fasting glucose, low-density lipoprotein cholesterol, and triglyceride levels while increasing high-density lipoprotein cholesterol levels. Clinical trials using mixtures (dried powdered plants or extracts) of known medicinal plants are recurrent in published works, in contrast with the scarce clinical trial studies with isolated compounds. Salvia miltiorrhiza Bunge. was by far the most targeted plant in the clinical trials analyzed here. Regarding clinical trials concerning Artemisia, there are more studies aiming to see its effect on diabetes, but the studies about cancer are more advanced. This review aims to give a critical summary of the most interesting and promising results from clinical trials. The abundance of studies with limited statistically significant clinical evidence hinders progress in clinical therapy. This situation demands far greater rigor from the scientific community, researchers, regulatory agencies, editors, and reviewers in conducting and publishing clinical studies.
Collapse
Affiliation(s)
- Wilson R. Tavares
- University of the Azores, Faculty of Sciences and Technology, Centre for Ecology, Evolution and Environmental Changes (cE3c), Azorean Biodiversity Group & Global Change and Sustainability Institute (CHANGE), 9501-321 Ponta Delgada, Portugal; (W.R.T.); (M.C.B.)
| | - Ana M. L. Seca
- University of the Azores, Faculty of Sciences and Technology, Centre for Ecology, Evolution and Environmental Changes (cE3c), Azorean Biodiversity Group & Global Change and Sustainability Institute (CHANGE), 9501-321 Ponta Delgada, Portugal; (W.R.T.); (M.C.B.)
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Carmo Barreto
- University of the Azores, Faculty of Sciences and Technology, Centre for Ecology, Evolution and Environmental Changes (cE3c), Azorean Biodiversity Group & Global Change and Sustainability Institute (CHANGE), 9501-321 Ponta Delgada, Portugal; (W.R.T.); (M.C.B.)
| |
Collapse
|
2
|
Date S, Bhatt LK. Targeting high-mobility-group-box-1-mediated inflammation: a promising therapeutic approach for myocardial infarction. Inflammopharmacology 2025; 33:767-784. [PMID: 39487941 DOI: 10.1007/s10787-024-01586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024]
Abstract
Myocardial ischemia, resulting from coronary artery blockage, precipitates cardiac arrhythmias, myocardial structural changes, and heart failure. The pathophysiology of MI is mainly based on inflammation and cell death, which are essential in aggravating myocardial ischemia and reperfusion injury. Emerging research highlights the functionality of high mobility group box-1, a non-histone nucleoprotein functioning as a chromosomal stabilizer and inflammatory mediator. HMGB1's release into the extracellular compartment during ischemia acts as damage-associated molecular pattern, triggering immune reaction by pattern recognition receptors and exacerbating tissue inflammation. Its involvement in signaling pathways like PI3K/Akt, TLR4/NF-κB, and RAGE/HMGB1 underscores its significance in promoting angiogenesis, apoptosis, and reducing inflammation, which is crucial for MI treatment strategies. This review highlights the complex function of HMGB1 in the pathogenesis of myocardial infarction by summarizing novel findings on the protein in ischemic situations. Understanding the mechanisms underlying HMGB1 could widen the way to specific treatments that minimize the severity of MI and enhance patient outcomes.
Collapse
Affiliation(s)
- Shrutika Date
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
3
|
Kan Z, Yan W, Yang M, Gao H, Meng D, Wang N, Fang Y, Wu L, Song Y. Effects of sodium tanshinone IIA sulfonate injection on inflammatory factors and vascular endothelial function in patients with acute coronary syndrome undergoing percutaneous coronary intervention: A systematic review and meta-analysis of randomized clinical trials. Front Pharmacol 2023; 14:1144419. [PMID: 36959861 PMCID: PMC10027702 DOI: 10.3389/fphar.2023.1144419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Background: Patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI) therapy may experience further damage to the vascular endothelium, leading to increased inflammatory response and in-stent thrombosis. In many clinical studies, sodium tanshinone IIA sulfonate injection (STS) has been found to reduce inflammatory factors and enhance vascular endothelial function in patients with ACS while improving the prognosis of PCI. However, to date, there has been no systematic review assessing the effectiveness and safety of STS on inflammatory factors and vascular endothelial function. Purpose: The aim of this study is to systematically review the effects of STS on inflammatory factors and endothelial function in patients with ACS treated with PCI. Methods: Until October 2022, eight literature databases and two clinical trial registries were searched for randomized controlled trials (RCTs) investigating STS treatment for ACS patients undergoing PCI. The quality of the included studies was assessed using the Cochrane Risk Assessment Tool 2.0. Meta-analysis was performed using RevMan 5.4 software. Results: Seventeen trials met the eligibility criteria, including 1,802 ACS patients undergoing PCI. The meta-analysis showed that STS significantly reduced high-sensitivity C-reactive protein (hs-CRP) levels (mean difference [MD = -2.35, 95% CI (-3.84, -0.86), p = 0.002], tumor necrosis factor-alpha (TNF-α) levels (standard mean difference [SMD = -3.29, 95%CI (-5.15, -1.42), p = 0,006], matrix metalloproteinase-9 (MMP-9) levels [MD = -16.24, 95%CI (-17.24, -15.24), p < 0.00001], and lipid peroxidation (LPO) levels [MD = -2.32, 95%CI (-2.70, -1.93), p < 0.00001], and increased superoxide dismutase (SOD) levels [SMD = 1.46, 95%CI (0.43, 2.49), p = 0,006] in patients with ACS. In addition, STS significantly decreased the incidence of major adverse cardiovascular events (relative risk = 0.54, 95%CI [0.44, 0.66], p < 0.00001). The quality of evidence for the outcomes was assessed to be very low to medium. Conclusion: STS can safely and effectively reduce the levels of hs-CRP, TNF-α, MMP-9, and LPO and increase the level of SOD in patients with ACS treated with PCI. It can also reduce the incidence of adverse cardiovascular events. However, these findings require careful consideration due to the small number of included studies, high risk of bias, and low to moderate evidence. In the future, more large-scale and high-quality RCTs will be needed as evidence in clinical practice.
Collapse
Affiliation(s)
- Zunqi Kan
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenli Yan
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Mengqi Yang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Huanyu Gao
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dan Meng
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ning Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuqing Fang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lingyu Wu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yongmei Song
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- *Correspondence: Yongmei Song,
| |
Collapse
|
4
|
Targeting Oxidative Stress and Endothelial Dysfunction Using Tanshinone IIA for the Treatment of Tissue Inflammation and Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2811789. [PMID: 35432718 PMCID: PMC9010204 DOI: 10.1155/2022/2811789] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/29/2022] [Accepted: 02/23/2022] [Indexed: 12/29/2022]
Abstract
Salvia miltiorrhiza Burge (Danshen), a member of the Lamiaceae family, has been used in traditional Chinese medicine for many centuries as a valuable medicinal herb with antioxidative, anti-inflammatory, and antifibrotic potential. Several evidence-based reports have suggested that Salvia miltiorrhiza and its components prevent vascular diseases, including myocardial infarction, myocardial ischemia/reperfusion injury, arrhythmia, cardiac hypertrophy, and cardiac fibrosis. Tanshinone IIA (TanIIA), a lipophilic component of Salvia miltiorrhiza, has gained attention because of its possible preventive and curative activity against cardiovascular disorders. TanIIA, which possesses antioxidative, anti-inflammatory, and antifibrotic properties, could be a key component in the therapeutic potential of Salvia miltiorrhiza. Vascular diseases are often initiated by endothelial dysfunction, which is accompanied by vascular inflammation and fibrosis. In this review, we summarize how TanIIA suppresses tissue inflammation and fibrosis through signaling pathways such as PI3K/Akt/mTOR/eNOS, TGF-β1/Smad2/3, NF-κB, JNK/SAPK (stress-activated protein kinase)/MAPK, and ERK/Nrf2 pathways. In brief, this review illustrates the therapeutic value of TanIIA in the alleviation of oxidative stress, inflammation, and fibrosis, which are critical components of cardiovascular disorders.
Collapse
|
5
|
Liang B, Li R, Liang Y, Gu N. Guanxin V Acts as an Antioxidant in Ventricular Remodeling. Front Cardiovasc Med 2022; 8:778005. [PMID: 35059446 PMCID: PMC8764413 DOI: 10.3389/fcvm.2021.778005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Our previous studies have shown that Guanxin V (GXV) is safe and effective in the treatment of ventricular remodeling (VR), but its mechanism related to oxidative stress has not been studied deeply. Methods: We applied integrating virtual screening and network pharmacology strategy to obtain the GXV-, VR-, and oxidative stress-related targets at first, and then highlighted the shared targets. We built the networks and conducted enrichment analysis. Finally, the main results were validated by molecular docking and solid experiments. Results: We obtained 251, 11,425, and 9,727 GXV-, VR-, and oxidative stress-related targets, respectively. GXV-component-target-VR and protein–protein interaction networks showed the potential mechanism of GXV in the treatment of VR. The following enrichment analysis results gathered many biological processes and “two GXV pathways” of oxidative stress-related to VR. All our main results were validated by molecular docking and solid experiments. Conclusion: GXV could be prescribed for VR through the mechanism, including complex interactions between related components and targets, as predicted by virtual screening and network pharmacology and validated by molecular docking and solid experiments. Our study promotes the explanation of the biological mechanism of GXV for VR.
Collapse
Affiliation(s)
- Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Li
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Liang
- Southwest Medical University, Luzhou, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Pharmacological basis of tanshinone and new insights into tanshinone as a multitarget natural product for multifaceted diseases. Biomed Pharmacother 2020; 130:110599. [PMID: 33236719 DOI: 10.1016/j.biopha.2020.110599] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/18/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Drug development has long included the systematic exploration of various resources. Among these, natural products are one of the most important resources from which novel agents are developed due to the multiple pharmacologic effects of these natural products on diseases. Tanshinone, a representative natural product, is the main compound extracted from the dried root and rhizome of Salvia miltiorrhiza Bge. Research on tanshinone began in the early 1930s. With the in-depth investigation of an increasing number of identified analogs, tanshinone has demonstrated a wide variety of bioactivities and contradicted the saying, 'You can't teach an old dog new tricks'. This review is focused on the pharmacological action of tanshinone and status of research on tanshinone in recent years. The mechanism of tanshinone has also drawn much attention, with the findings of representative targets and pathways of tanshinone. The most recent studies have comprehensively shown that tanshinone can be used to treat leukemia and solid carcinoma, protect against cardiovascular and cerebrovascular diseases, and alleviate liver- and kidney-related diseases, among its other effects. Multiple signaling pathways, including antiproliferative, antiapoptotic, anti-inflammatory, and antioxidative stress pathways, are involved in its actions.
Collapse
|
7
|
Liu J, Zhou X, Meng Q, Huang KW, Liu J, Tie J, Zhuang R, Chen G, Zhang Y, Wei L, Huang L, Li CG, Wang B, Fan H, Liu Z. AFC1 Compound Attenuated MI/R-Induced Ventricular Remodeling via Inhibiting PDGFR and STAT Pathway. Front Pharmacol 2019; 10:1142. [PMID: 31680946 PMCID: PMC6803464 DOI: 10.3389/fphar.2019.01142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/04/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Effective interventions to improve the outcome of patients subjected to myocardial ischemia reperfusion (MI/R) are urgent in clinical settings. Tanshinone IIA (TSA) is reported to attenuate myocardial injury and improve ventricular remodeling post MI/R. Here, we evaluated the efficacy of AFC1 compound that is similar to TSA structure in murine MI/R models. We found that AFC1 had a comparable effect of improving murine cardiac function after MI/R while it was superior to TSA in safety profile. Administration of AFC1 reduced reactive oxygen species (ROS) production, inflammatory cells infiltration, and the expression of platelet derived growth factor receptors (PDGFR) in infarcted myocardium. Treatment with AFC1 also attenuated MI/R-induced cardiac remodeling and contributed to the recovery of cardiac function. Additionally, AFC1 reversed the elevation of PDGFR expression induced by PDGF-AB in both neonatal rat cardiomyocytes (NCMs) and neonatal rat cardiac fibroblasts (NCFs) and suppressed PDGF-AB induced NCM hypertrophy via STAT3 pathway and NCF collagen synthesis through p38-MAPK signaling in vitro. Similarly, AFC1 may contribute to the recovery of cardiac function in mice post MI/R via suppressing STAT signaling. Our results confirmed that AFC1 exerts anti-hypertrophic and anti-fibrotic effects against MI/R-induced cardiac remodeling, and suggest that AFC1 may have a promising potential in improving the outcome of patients who suffered from MI/R.
Collapse
Affiliation(s)
- Jie Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaohui Zhou
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Heart Failure Research Center, Shanghai East Hospital, Shanghai, China
| | - Qingshu Meng
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Heart Failure Research Center, Shanghai East Hospital, Shanghai, China
| | - Kevin W Huang
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Jing Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinjun Tie
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rulin Zhuang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guohan Chen
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuhui Zhang
- Department of Ultrasound, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Wei
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Heart Failure Research Center, Shanghai East Hospital, Shanghai, China
| | - Li Huang
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Binghui Wang
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Shanghai, China.,Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Huimin Fan
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Heart Failure Research Center, Shanghai East Hospital, Shanghai, China.,Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongmin Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Heart Failure Research Center, Shanghai East Hospital, Shanghai, China.,Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Zhou ZY, Zhao WR, Zhang J, Chen XL, Tang JY. Sodium tanshinone IIA sulfonate: A review of pharmacological activity and pharmacokinetics. Biomed Pharmacother 2019; 118:109362. [PMID: 31545252 DOI: 10.1016/j.biopha.2019.109362] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 02/08/2023] Open
Abstract
Sodium tanshinone IIA sulfonate (STS) is a water-soluble derivate of tanshinone IIA (Tan IIA) which is an active lipophilic constitute of Chinese Materia Medica Salvia miltiorrhiza Bge. (Danshen). STS presents multiple pharmacological activities, including anti-oxidant, anti-inflammation and anti-apoptosis, and has been approved for treatment of cardiovascular diseases by China State Food and Drug Administration (CFDA). In this review, we comprehensively summarized the pharmacological activities and pharmacokinetics of STS, which could support the further application and development of STS. In the recent decades, numerous experimental and clinical studies have been conducted to investigate the potential treatment effects of STS in various diseases, such as heart diseases, brain diseases, pulmonary diseases, cancers, sepsis and so on. The underlying mechanisms were most related to anti-oxidative and anti-inflammatory effects of STS via regulating various transcription factors, such as NF-κB, Nrf2, Stat1/3, Smad2/3, Hif-1α and β-catenin. Iron channels, including Ca2+, K+ and Cl- channels, were also the important targets of STS. Additionally, we emphasized the differences between STS and Tan IIA despite the interchangeable use of Tan IIA and STS in many previous studies. It is promising to improve the efficacy and reduce side effects of chemotherapeutic drug by the combination use of STS in canner treatment. The application of STS in pregnancy needs to be seriously considered. Moreover, the drug-drug interactions between STS and other drugs needs to be further studied as well as the complications of STS.
Collapse
Affiliation(s)
- Zhong-Yan Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Wai-Rong Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Cardiac Rehabilitation Center of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jing Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xin-Lin Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jing-Yi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Cardiac Rehabilitation Center of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
9
|
Mao S, Vincent M, Chen M, Zhang M, Hinek A. Exploration of Multiple Signaling Pathways Through Which Sodium Tanshinone IIA Sulfonate Attenuates Pathologic Remodeling Experimental Infarction. Front Pharmacol 2019; 10:779. [PMID: 31354493 PMCID: PMC6639725 DOI: 10.3389/fphar.2019.00779] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 06/17/2019] [Indexed: 12/20/2022] Open
Abstract
The level of maladaptive myocardial remodeling consistently contributes to the poor prognosis of patients following a myocardial infarction (MI). In this study, we investigated whether and how sodium tanshinone IIA sulfonate (STS) would attenuate the post-infarct cardiac remodeling in mice model of MI developing after surgical ligation of the left coronary artery. All mice subjected to experimental MI or to the sham procedure were then treated for the following 4 weeks, either with STS or with a vehicle alone. Results of our studies indicated that STS treatment of MI mice prevented the left ventricular dilatation and improved their cardiac function. Results of further tests, aimed at mechanistic explanation of the beneficial effects of STS, indicated that treatment with this compound enhanced the autophagy and, at the same time, inhibited apoptosis of the cardiomyocytes. Meaningfully, we have also established that myocardium of STS-treated mice displayed significantly higher levels of adenosine monophosphate kinase than their untreated counterparts and that this effect additionally associated with the significantly diminished activities of apoptotic promoters: mammalian target of rapamycin and P70S6 kinase. Moreover, we also found that additional administration of the adenosine monophosphate kinase inhibitor (compound C) or autophagy inhibitor (chloroquine) practically eliminated the observed beneficial effects of STS. In conclusion, we suggest that the described multistage mechanism triggered by STS treatment enhanced autophagy, thereby attenuating pathologic remodeling of the post-infarct hearts.
Collapse
Affiliation(s)
- Shuai Mao
- Key Discipline of Integrated Traditional Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Matthew Vincent
- Medical School, St. George’s, University of London, London, United Kingdom
| | - Maosheng Chen
- Key Discipline of Integrated Traditional Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Minzhou Zhang
- Key Discipline of Integrated Traditional Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Aleksander Hinek
- Physiology & Experimental Medicine, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
10
|
Ren J, Fu L, Nile SH, Zhang J, Kai G. Salvia miltiorrhiza in Treating Cardiovascular Diseases: A Review on Its Pharmacological and Clinical Applications. Front Pharmacol 2019; 10:753. [PMID: 31338034 PMCID: PMC6626924 DOI: 10.3389/fphar.2019.00753] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Bioactive chemical constitutes from the root of Salvia miltiorrhiza classified in two major groups, viz., liposoluble tanshinones and water-soluble phenolics. Tanshinone IIA is a major lipid-soluble compound having promising health benefits. The in vivo and in vitro studies showed that the tanshinone IIA and salvianolate have a wide range of cardiovascular and other pharmacological effects, including antioxidative, anti-inflammatory, endothelial protective, myocardial protective, anticoagulation, vasodilation, and anti-atherosclerosis, as well as significantly help to reduce proliferation and migration of vascular smooth muscle cells. In addition, some of the clinical studies reported that the S. miltiorrhiza preparations in combination with Western medicine were more effective for treatment of various cardiovascular diseases including angina pectoris, myocardial infarction, hypertension, hyperlipidemia, and pulmonary heart diseases. In this review, we demonstrated the potential applications of S. miltiorrhiza, including pharmacological effects of salvianolate, tanshinone IIA, and its water-soluble derivative, like sodium tanshinone IIA sulfonate. Moreover, we also provided details about the clinical applications of S. miltiorrhiza preparations in controlling the cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Ren
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Li Fu
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Zhang
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Guoyin Kai
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, China.,Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
11
|
Wang W, Chen J, Li M, Jia H, Han X, Zhang J, Zou Y, Tan B, Liang W, Shang Y, Xu Q, A S, Wang W, Mao J, Gao X, Fan G, Liu W. Rebuilding Postinfarcted Cardiac Functions by Injecting TIIA@PDA Nanoparticle-Cross-linked ROS-Sensitive Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2880-2890. [PMID: 30592403 DOI: 10.1021/acsami.8b20158] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Drug-loaded injectable hydrogels have been proven to possess huge potential for applications in tissue engineering. However, increasing the drug loading capacity and regulating the release system to adapt to the microenvironment after myocardial infarction face a huge challenge. In this research, an ROS-sensitive injectable hydrogel strengthened by self-nanodrugs was constructed. A hyperbranched ROS-sensitive macromer (HB-PBAE) with multiacrylate end groups was synthesized through dynamic controlled Michael addition. Meanwhile, a simple protocol based on dopamine polymerization was employed to generate a polydopamine (PDA) layer deposited on the tanshinone IIA (TIIA) nanoparticles (NPs) formed from spontaneous hydrophobic self-assembly. The HB-PBAE reacted with thiolate-modified hyaluronic acid (HA-SH) to form an in situ hydrogel, where TIIA@PDA NPs can be conveniently entrapped through the chemical cross-link between thiolate and quinone groups on PDA, which doubles the modulus of hydrogels. The in vivo degradation behavior of the hydrogels was characterized by MRI, exhibiting a much slower degradation behavior that is markedly different from that of in vitro. Importantly, a significant improvement of cardiac functions was achieved after hydrogel injection in terms of increased ejection fraction and decreased infarction size, accompanied by inhibition of the expression of inflammation factors, such as IL-1β, IL-6, and TNF-α.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Jingrui Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
- Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Min Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
- Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Huizhen Jia
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Xiaoxu Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Jingxuan Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Yang Zou
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Baoyu Tan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Wei Liang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Yingying Shang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Qian Xu
- Charles Institute of Dermatology, School of Medicine , University College Dublin , Belfield, Dublin D04 V1W8 , Ireland
| | - Sigen A
- Charles Institute of Dermatology, School of Medicine , University College Dublin , Belfield, Dublin D04 V1W8 , Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine , University College Dublin , Belfield, Dublin D04 V1W8 , Ireland
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
- Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| |
Collapse
|
12
|
Mao S, Chen P, Li T, Guo L, Zhang M. Tongguan Capsule Mitigates Post-myocardial Infarction Remodeling by Promoting Autophagy and Inhibiting Apoptosis: Role of Sirt1. Front Physiol 2018; 9:589. [PMID: 29872406 PMCID: PMC5972280 DOI: 10.3389/fphys.2018.00589] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
Left ventricular (LV) adverse remodeling and the concomitant functional deterioration contributes to the poor prognosis of patients with myocardial infarction (MI). Thus, a more effective treatment strategy is needed. Tongguan capsule (TGC), a patented Chinese medicine, has been shown to be cardioprotective in both humans and animals following ischemic injury, although its precise mechanism remains unclear. To investigate whether TGC can improve cardiac remodeling in the post-infarct heart, adult C57/BL6 mice underwent coronary artery ligation and were administered TGC or vehicle (saline) for 6 weeks. The results demonstrated that the TGC group showed significant improvement in survival ratio and cardiac function and structure as compared to the vehicle group. Histological and western blot analyses revealed decreased cellular inflammation and apoptosis in cardiomyocytes of the TGC group. Furthermore, TGC upregulated the Atg5 expression and LC3II-to-LC3I ratio but downregulated autophagy adaptor p62 expression, suggesting that TGC led to increased autophagic flux. Interestingly, with the administration of 3-methyladenine, an autophagy inhibitor, in conjunction with TGC, the aforesaid effects significantly decreased. Further mechanistic studies revealed that TGC increased silent information regulator 1 (Sirt1) expression to reduce the phosphorylation of the mammalian target of rapamycin and its downstream effectors P70S6K and 4EBP1. Moreover, the induction of Sirt1 by TGC was inhibited by the specific inhibitor EX527. In the presence of EX527, TGC-induced autophagy-specific proteins were downregulated, while apoptotic and inflammatory factors were upregulated. In summary, our results demonstrate that TGC improved cardiac remodeling in a murine model of MI by preventing cardiomyocyte inflammation and apoptosis but enhancing autophagy through Sirt1 activation.
Collapse
Affiliation(s)
- Shuai Mao
- Key Discipline of Integrated Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Peipei Chen
- Key Discipline of Integrated Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ting Li
- Key Discipline of Integrated Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Liheng Guo
- Key Discipline of Integrated Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Minzhou Zhang
- Key Discipline of Integrated Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
13
|
Li ZM, Xu SW, Liu PQ. Salvia miltiorrhizaBurge (Danshen): a golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol Sin 2018; 39:802-824. [PMID: 29698387 PMCID: PMC5943903 DOI: 10.1038/aps.2017.193] [Citation(s) in RCA: 322] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023] Open
Abstract
Salvia miltiorrhiza Burge (Danshen) is an eminent medicinal herb that possesses broad cardiovascular and cerebrovascular protective actions and has been used in Asian countries for many centuries. Accumulating evidence suggests that Danshen and its components prevent vascular diseases, in particular, atherosclerosis and cardiac diseases, including myocardial infarction, myocardial ischemia/reperfusion injury, arrhythmia, cardiac hypertrophy and cardiac fibrosis. The published literature indicates that lipophilic constituents (tanshinone I, tanshinone IIa, tanshinone IIb, cryptotanshinone, dihydrotanshinone, etc) as well as hydrophilic constituents (danshensu, salvianolic acid A and B, protocatechuic aldehyde, etc) contribute to the cardiovascular protective actions of Danshen, suggesting a potential synergism among these constituents. Herein, we provide a systematic up-to-date review on the cardiovascular actions and therapeutic potential of major pharmacologically active constituents of Danshen. These bioactive compounds will serve as excellent drug candidates in small-molecule cardiovascular drug discovery. This article also provides a scientific rationale for understanding the traditional use of Danshen in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Zhuo-ming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Suo-wen Xu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Pei-qing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
14
|
Wu DM, Wang YJ, Han XR, Wen X, Li L, Xu L, Lu J, Zheng YL. Tanshinone IIA prevents left ventricular remodelling via the TLR4/MyD88/NF-κB signalling pathway in rats with myocardial infarction. J Cell Mol Med 2018. [PMID: 29524303 PMCID: PMC5980158 DOI: 10.1111/jcmm.13557] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In this study, we aim to investigate the role of tanshinone IIA in myocardial infarction (MI), especially in left ventricular remodelling (VR) and the underlying mechanism involving the TLR4/MyD88/NF‐κB signalling pathway. Sprague‐Dawley (SD) rats (n = 96) were selected, and 12 of them underwent sham surgery. The remaining 84 rats were subjected to MI modelling. HE and MT staining were carried out to estimate infract size, histopathological changes and fibrosis degree. Macrophage infiltration and cardiomyocyte apoptosis were evaluated by immunohistochemistry and TUNEL staining. Reverse transcription quantitative polymerase chain reaction (RT‐qPCR) and Western blotting were used to determine the expression levels of TLR4, MyD88 and NF‐κB. Serum levels of IL‐2, IL‐6, IL‐8, TNF‐a, procollagen I Cpropeptide (PICP), and procollagen III N‐propeptide (PIIINP) were measured using enzyme‐linked immunosorbent assay (ELISA). The heart weight/body weight, mean arterial pressure (MAP), left ventricular end‐systolic pressure (LVESP), +dP/dt and −dP/dt increased while the ventricular function and the left ventricular end‐diastole pressure (LVEDP) decreased in MI rats. Compared with the rats undergoing sham surgery, MI rats showed larger infarct size, severer fibrosis, higher expression levels of TLR4, NF‐κB‐P65, MyD88, IL‐2, IL‐6, IL‐8, TNF‐a, PICP and PIIINP as well as enhanced macrophage infiltration, cardiomyocyte apoptosis. After treatment with tanshinone IIA combined with LPS for 4 weeks, the rats showed better condition than those treated with only LPS. These results indicate that tanshinone IIA attenuates MI and prevents left VR. Importantly, inhibition of TLR4/MyD88/NF‐κB signalling pathway is a key step in this process.
Collapse
Affiliation(s)
- Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yong-Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xin-Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Lei Li
- Department of Cardiovasculare, The Third Hospital of Hebei Medical University, Hebei, China
| | - Lan Xu
- Department of Cardiovasculare, The Third Hospital of Hebei Medical University, Hebei, China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
15
|
Zhu J, Xu Y, Ren G, Hu X, Wang C, Yang Z, Li Z, Mao W, Lu D. Tanshinone IIA Sodium sulfonate regulates antioxidant system, inflammation, and endothelial dysfunction in atherosclerosis by downregulation of CLIC1. Eur J Pharmacol 2017; 815:427-436. [PMID: 28970012 DOI: 10.1016/j.ejphar.2017.09.047] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/19/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Tanshinone IIA Sodium sulfonate (STS) is clinically used for treating cardiovascular diseases in Traditional Chinese Medicine due to its antioxidation and anti-inflammation activities. Intracellular chloride channel 1 (CLIC1) participates in the regulation of oxidative stress and inflammation. This study investigates whether CLIC1 mediates the cardioprotective effects of STS. METHODS STS were used to treat atherosclerosis (AS) induced by feeding Apolipoprotein E-deficient (ApoE-/-) mice with a high-fat, cholesterol-rich diet. In addition, normal and CLIC1-/- human umbilical vein endothelial cells were treated with STS after exposure to H2O2 for 12h. The oxidative status was determined by analyzing reactive oxygen species(ROS) and malondialdehyde (MDA) levels. ELISA, qRT-PCR and Western blot were used to determine the levels of TNF-α, IL-6, ICAM-1 and VCAM-1. CLIC1 cellular localization was examined by immunofluorescence. Chloride ion concentration was detected with chloride ion quenchers (MQAE). RESULTS STS treatment decreased atherosclerotic lesion area by 3.5 times (P = 0.001) in vivo. Meanwhile, STS reduced MDA production (13.6%, P = 0.008), increased SOD activity (113.6%, P = 0.008), decreased TNF-α (38.6%, P = 0.008) and IL-6 (43.0%, P = 0.03) levels, and downregulated the expression of CLIC1, ICAM-1, and VCAM-1 in the atherosclerotic mice. The dose-dependent anti-oxidative and anti-inflammatory effects of STS were further confirmed in vitro. Furthermore, CLIC1 depletion abolished the STS-mediated decrease of ROS and MDA production in HUVEC cells. Additionally, STS inhibited both CLIC1 membrane translocation and chloride ion concentration. CONCLUSION The anti-oxidant, and anti-inflammation properties of STS in preventing AS is mediated by its inhibition of CLIC1 expression and membrane translocation.
Collapse
Affiliation(s)
- Ji Zhu
- Clinical Laboratory, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingling Xu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guangyan Ren
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao Hu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cui Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Yang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhuoyu Li
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Mao
- Cardiovascular department,The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310006, China
| | - Dezhao Lu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
16
|
Traditional Chinese Medicine Protects against Cytokine Production as the Potential Immunosuppressive Agents in Atherosclerosis. J Immunol Res 2017; 2017:7424307. [PMID: 29038791 PMCID: PMC5606136 DOI: 10.1155/2017/7424307] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease caused by dyslipidemia and mediated by both innate and adaptive immune responses. Inflammation is a critical factor at all stages of atherosclerosis progression. Proinflammatory cytokines accelerate atherosclerosis progression, while anti-inflammatory cytokines ameliorate the disease. Accordingly, strategies to inhibit immune activation and impede immune responses towards anti-inflammatory activity are an alternative therapeutic strategy to conventional chemotherapy on cardiocerebrovascular outcomes. Since a number of Chinese medicinal plants have been used traditionally to prevent and treat atherosclerosis, it is reasonable to assume that the plants used for such disease may suppress the immune responses and the resultant inflammation. This review focuses on plants that have immunomodulatory effects on the production of inflammatory cytokine burst and are used in Chinese traditional medicine for the prevention and therapy of atherosclerosis.
Collapse
|
17
|
Mao S, Wang L, Ouyang W, Zhou Y, Qi J, Guo L, Zhang M, Hinek A. Traditional Chinese medicine, Danlou tablets alleviate adverse left ventricular remodeling after myocardial infarction: results of a double-blind, randomized, placebo-controlled, pilot study. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:447. [PMID: 27825334 PMCID: PMC5101662 DOI: 10.1186/s12906-016-1406-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 10/19/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Danlou tablets, a patented Chinese Medicine, have been long approved for the treatment of ischemic heart disease in China. While numerous empirical observations suggested Danlou tablets could decrease frequency and duration of angina pectoris attacks, evidence supporting its efficacy on cardiac remodeling remains inadequate. Therefore, this pilot trial was designed to determine whether Danlou tablets would reduce adverse left ventricular (LV) remodeling in patients with myocardial infarction (MI). METHODS AND RESULTS Eligible patients with acute MI were enrolled and randomly assigned to Danlou tablets or placebo groups, superimposed on standard treatment for MI. Then, in addition to assessment of the clinical outcome, the changes in LV volumes were evaluated by a serial echocardiography. In total, 83 patients (Danlou tablets 42 and placebo 41) completed 90 days of treatment and had complete baseline and outcome data. Standard echocardiographic evaluations revealed significant differences in the change of LV end-diastolic volume index (LVEDVi) between group of patients treated with Danlou tablets and the placebo group (-4.49 ± 7.29 vs. -0.34 ± 9.01 mL/m2, P < 0.001). The reduction in LVEDVi was independent of beta-blocker, ACE inhibitors/ARBs use. Furthermore, treatment with Danlou tablets significantly reduced LV end-systolic volume index (-4.09 ± 5.85 vs. -0.54 ± 5.72 mL/m2, P < 0.001) and improved the LV ejection fraction (4.83 ± 9.23 vs. 0.23 ± 8.15 %, P < 0.001), as compared to placebo. Meaningfully, the incidence of the major adverse cardiovascular events was also lower in patients receiving Danlou tablets (P < 0.05). CONCLUSION Superimposed on the standard pharmacologic treatment, Danlou tablets significantly reversed post-MI adverse LV remodeling, thereby contributed to the overall positive clinical outcome. TRIAL REGISTRATION clinicaltrials.gov identifier NCT02675322 (February 1, 2016).
Collapse
Affiliation(s)
- Shuai Mao
- Second Clinical Medical College, Key Discipline of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- Physiology & Experimental Medicine Program, Hospital for Sick Children, Toronto, M5G1X8, Canada
| | - Lei Wang
- Second Clinical Medical College, Key Discipline of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Wenwei Ouyang
- Second Clinical Medical College, Key Discipline of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Public Health Sciences, Health Systems and Policy, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Yuanshen Zhou
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Jianyong Qi
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Liheng Guo
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Minzhou Zhang
- Second Clinical Medical College, Key Discipline of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| | - Aleksander Hinek
- Physiology & Experimental Medicine Program, Hospital for Sick Children, Toronto, M5G1X8, Canada
| |
Collapse
|