1
|
Eini L, Naseri M, Karimi-Busheri F, Bozorgmehr M, Ghods R, Madjd Z. Primary colonospheres maintain stem cell-like key features after cryopreservation. J Cell Physiol 2019; 235:2452-2463. [PMID: 31578720 DOI: 10.1002/jcp.29150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/23/2019] [Indexed: 12/18/2022]
Abstract
The development of efficient and repeatable protocols for biobanking and prolonged storage of cancer stem cells (CSCs), with minimum alterations in biological function, is valuable and desired, particularly for retrospective analysis and clinical applications. In particular, data regarding the effect of cryopreservation on CSCs's functional features is scarce. In this regard, few studies have been shown that 3D spheroid structures, which enriched for CSCs, can keep their biological phenotype and genetic profiles. Here, for the first time, we present data on cryopreservation of CT-26 colonospheres, with the focus on essential stem cell-like properties after thawing. Tumor biopsy-derived colonospheres were frozen in standard freezing media (90% fetal bovine serum + 10% dimethyl sulfoxide) and stored in liquid nitrogen for 10 months. Then, cryopreservation effect on preservation of CSCs-related features was verified using real-time polymerase chain reaction for evaluation of stemness genes and flow cytometry for the putative colorectal CSC surface biomarkers. The self-renewal capacity of thawed spheres was also compared with their fresh counterparts using serial formation assay. Finally, tumorigenic capacity of both groups was evaluated in immunocompetence mouse model. Our data indicated that postthawed colonospheres had high viability without drastic alteration in biological and structural features and maintained self-renewal potential after sequential passages. Real-time analysis showed that both fresh and frozen colonospheres displayed similar expression pattern for key stemness genes: SOX2 and OCT4. Cryopreserved spheroids expressed CD133, CD166, and DCLK1 CSCs surface biomarkers at elevated levels when compared with parental as non-cryopreserved counterparts. Our electron scanning microscopy micrographs clearly demonstrated that postthawed colonospheres retain their integrity and cell surface morphology and characteristics. We also found that both fresh and frozen spheroids were equally tumorigenic. This study represented an effective strategy for reliable storage of intact CT-26 colonospheres; this can provide researchers with a functionally reliable repository of murine colorectal CSCs for their future CSCs projects.
Collapse
Affiliation(s)
- Leila Eini
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Basic Science, Faculty of Veterinary, Science and Research Branch of Islamic Azad University, Tehran, Iran
| | - Marzieh Naseri
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Goltsev AM, Bondarovych MO, Babenko NM, Gaevska YO, Dubrava TG, Ostankov MV. Effect of different cryopreservation regimens on Ehrlich carcinoma growth. Cell Tissue Bank 2019; 20:411-421. [DOI: 10.1007/s10561-019-09780-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022]
|
3
|
Kulikova B, Kovac M, Bauer M, Tomkova M, Olexikova L, Vasicek J, Balazi A, Makarevich AV, Chrenek P. Survivability of rabbit amniotic fluid-derived mesenchymal stem cells post slow-freezing or vitrification. Acta Histochem 2019; 121:491-499. [PMID: 31005288 DOI: 10.1016/j.acthis.2019.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/03/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022]
Abstract
This work aimed to evaluate the effect of two distinct cryopreservation procedures - conventional slow-freezing and vitrification, on survivability and mesenchymal marker expression stability of rabbit amniotic fluid-derived mesenchymal stem cells (rAF-MSCs). Cells at passage 2 were slowly frozen, using 10% of dimethylsulfoxide, or vitrified, using 40% of ethylene glycol, 0.5 M sucrose and 18% Ficoll 70. After three months storage in liquid nitrogen, viability, chromosomal stability, ultrastructure, surface and intracellular marker expression and differentiation potential of cells were evaluated immediately post-thawing/warming and after additional culture for 48-72 h. Our results showed decreased (P ≤ 0.05) viability of cells post-thawing/warming. However, after additional culture, the viability was similar to those in fresh counterparts in both cryopreserved groups. Increase (P ≤ 0.05) in the population doubling time of vitrified cells was observed, while doubling time of slow-frozen cells remained similar to non-cryopreserved cells. No changes in karyotype (chromosomal numbers) were observed in frozen/vitrified AF-MSCs, and histological staining confirmed similar differentiation potential of fresh and frozen/vitrified cells. Analysis of mesenchymal marker expression by qPCR showed that both cryopreservation approaches significantly affected expression of CD73 and CD90 surface markers. These changes were not detected using flow cytometry. In summary, the conventional slow-freezing and vitrification are reliable and effective approaches for the cryopreservation of rabbit AF-MSCs. Nevertheless, our study confirmed affected expression of some mesenchymal markers following cryopreservation.
Collapse
Affiliation(s)
- Barbora Kulikova
- Research Institute for Animal Production in Nitra, NAFC, Hlohovecká 2, 951 41 Lužianky, Slovak Republic.
| | - Michal Kovac
- Faculty of Biotechnology and Food Science, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Miroslav Bauer
- Research Institute for Animal Production in Nitra, NAFC, Hlohovecká 2, 951 41 Lužianky, Slovak Republic; Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nábrežie mládeže 91, 949 74 Nitra, Slovak Republic
| | - Maria Tomkova
- Faculty of Biotechnology and Food Science, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Lucia Olexikova
- Research Institute for Animal Production in Nitra, NAFC, Hlohovecká 2, 951 41 Lužianky, Slovak Republic
| | - Jaromir Vasicek
- Research Institute for Animal Production in Nitra, NAFC, Hlohovecká 2, 951 41 Lužianky, Slovak Republic; Faculty of Biotechnology and Food Science, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Andrej Balazi
- Research Institute for Animal Production in Nitra, NAFC, Hlohovecká 2, 951 41 Lužianky, Slovak Republic
| | - Alexander V Makarevich
- Research Institute for Animal Production in Nitra, NAFC, Hlohovecká 2, 951 41 Lužianky, Slovak Republic
| | - Peter Chrenek
- Research Institute for Animal Production in Nitra, NAFC, Hlohovecká 2, 951 41 Lužianky, Slovak Republic; Faculty of Biotechnology and Food Science, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic; Faculty of Animal Breeding and Biology, University of Technology and Life Sciences, Al. prof. S. Kaliskiego 7, 85 796 Bydgoszcz, Poland
| |
Collapse
|
4
|
Pelisek J, Hegenloh R, Bauer S, Metschl S, Pauli J, Glukha N, Busch A, Reutersberg B, Kallmayer M, Trenner M, Wendorff H, Tsantilas P, Schmid S, Knappich C, Schaeffer C, Stadlbauer T, Biro G, Wertern U, Meisner F, Stoklasa K, Menges AL, Radu O, Dallmann-Sieber S, Karlas A, Knipfer E, Reeps C, Zimmermann A, Maegdefessel L, Eckstein HH. Biobanking: Objectives, Requirements, and Future Challenges-Experiences from the Munich Vascular Biobank. J Clin Med 2019; 8:jcm8020251. [PMID: 30781475 PMCID: PMC6406278 DOI: 10.3390/jcm8020251] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/01/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022] Open
Abstract
Collecting biological tissue samples in a biobank grants a unique opportunity to validate diagnostic and therapeutic strategies for translational and clinical research. In the present work, we provide our long-standing experience in establishing and maintaining a biobank of vascular tissue samples, including the evaluation of tissue quality, especially in formalin-fixed paraffin-embedded specimens (FFPE). Our Munich Vascular Biobank includes, thus far, vascular biomaterial from patients with high-grade carotid artery stenosis (n = 1567), peripheral arterial disease (n = 703), and abdominal aortic aneurysm (n = 481) from our Department of Vascular and Endovascular Surgery (January 2004–December 2018). Vascular tissue samples are continuously processed and characterized to assess tissue morphology, histological quality, cellular composition, inflammation, calcification, neovascularization, and the content of elastin and collagen fibers. Atherosclerotic plaques are further classified in accordance with the American Heart Association (AHA), and plaque stability is determined. In order to assess the quality of RNA from FFPE tissue samples over time (2009–2018), RNA integrity number (RIN) and the extent of RNA fragmentation were evaluated. Expression analysis was performed with two housekeeping genes—glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and beta-actin (ACTB)—using TaqMan-based quantitative reverse-transcription polymerase chain reaction (qRT)-PCR. FFPE biospecimens demonstrated unaltered RNA stability over time for up to 10 years. Furthermore, we provide a protocol for processing tissue samples in our Munich Vascular Biobank. In this work, we demonstrate that biobanking is an important tool not only for scientific research but also for clinical usage and personalized medicine.
Collapse
Affiliation(s)
- Jaroslav Pelisek
- DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, 80636 Munich, Germany.
| | - Renate Hegenloh
- Department of Vascular and Endovascular Surgery, Technische Universität München, 81675 Munich, Germany.
| | - Sabine Bauer
- Department of Vascular and Endovascular Surgery, Technische Universität München, 81675 Munich, Germany.
| | - Susanne Metschl
- Department of Vascular and Endovascular Surgery, Technische Universität München, 81675 Munich, Germany.
| | - Jessica Pauli
- Department of Vascular and Endovascular Surgery, Technische Universität München, 81675 Munich, Germany.
| | - Nadiya Glukha
- Department of Vascular and Endovascular Surgery, Technische Universität München, 81675 Munich, Germany.
| | - Albert Busch
- Department of Vascular and Endovascular Surgery, Technische Universität München, 81675 Munich, Germany.
| | - Benedikt Reutersberg
- Department of Vascular and Endovascular Surgery, Technische Universität München, 81675 Munich, Germany.
| | - Michael Kallmayer
- Department of Vascular and Endovascular Surgery, Technische Universität München, 81675 Munich, Germany.
| | - Matthias Trenner
- Department of Vascular and Endovascular Surgery, Technische Universität München, 81675 Munich, Germany.
| | - Heiko Wendorff
- Department of Vascular and Endovascular Surgery, Technische Universität München, 81675 Munich, Germany.
| | - Pavlos Tsantilas
- Department of Vascular and Endovascular Surgery, Technische Universität München, 81675 Munich, Germany.
| | - Sofie Schmid
- Department of Vascular and Endovascular Surgery, Technische Universität München, 81675 Munich, Germany.
| | - Christoph Knappich
- Department of Vascular and Endovascular Surgery, Technische Universität München, 81675 Munich, Germany.
| | - Christoph Schaeffer
- Department of Vascular and Endovascular Surgery, Technische Universität München, 81675 Munich, Germany.
| | - Thomas Stadlbauer
- Department of Vascular and Endovascular Surgery, Technische Universität München, 81675 Munich, Germany.
| | - Gabor Biro
- Department of Vascular and Endovascular Surgery, Technische Universität München, 81675 Munich, Germany.
| | - Uta Wertern
- Department of Vascular and Endovascular Surgery, Technische Universität München, 81675 Munich, Germany.
| | - Franz Meisner
- Department of Vascular and Endovascular Surgery, Technische Universität München, 81675 Munich, Germany.
| | - Kerstin Stoklasa
- Department of Vascular and Endovascular Surgery, Technische Universität München, 81675 Munich, Germany.
| | - Anna-Leonie Menges
- Department of Vascular and Endovascular Surgery, Technische Universität München, 81675 Munich, Germany.
| | - Oksana Radu
- Department of Vascular and Endovascular Surgery, Technische Universität München, 81675 Munich, Germany.
| | - Sabine Dallmann-Sieber
- Department of Vascular and Endovascular Surgery, Technische Universität München, 81675 Munich, Germany.
| | - Angelos Karlas
- Department of Vascular and Endovascular Surgery, Technische Universität München, 81675 Munich, Germany.
| | - Eva Knipfer
- Department of Vascular and Endovascular Surgery, Technische Universität München, 81675 Munich, Germany.
| | - Christian Reeps
- University Centre for Vascular Medicine and Department of Vascular Surgery, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany.
| | - Alexander Zimmermann
- Department of Vascular and Endovascular Surgery, Technische Universität München, 81675 Munich, Germany.
| | - Lars Maegdefessel
- DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, 80636 Munich, Germany.
| | - Hans-Henning Eckstein
- DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, 80636 Munich, Germany.
| |
Collapse
|
5
|
Key Issues Related to Cryopreservation and Storage of Stem Cells and Cancer Stem Cells: Protecting Biological Integrity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 951:1-12. [PMID: 27837550 DOI: 10.1007/978-3-319-45457-3_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cryopreservation and biobanking of stem cells are becoming increasingly important as stem cell technology and application attract the interest of industry, academic research, healthcare and patient organisations. Stem cell are already being used in the treatment of some diseases and it is anticipated that stem cell therapy will play a central role in future medicine. Similarly, the discovery of both hematopoietic and solid tumor stem cells and their clinical relevance have profoundly altered paradigms for cancer research as the cancer stem cells are considered promising new targets against cancer. Consequently, long-term cryopreservation and banking of normal and malignant stem cells is crucial and will inevitably become a routine procedure that requires highly regulated and safe methods of specimen storage. There is, however, an increasing amount of evidence showing contradictory results on the impact of cryopreservation and thawing of stem cells, including extensive physical and biological stresses, apoptosis and necrosis, mitochondrial injuries, changes to basal respiration and ATP production, cellular structural damage, telomere shortening and cellular senescence, and DNA damage and oxidative stress. Notably, cell surface proteins that play a major role in stem cell fate and are used as the biomarkers of stem cells are more vulnerable to cold stress than other proteins. There are also data supporting the alteration in some biological features and genetic integrity at the molecular level of the post-thawed stem cells. This article reviews the current and future challenges of cryopreservation of stem cells and stresses the need for further rigorous research on the methodologies for freezing and utilizing cancer stem cells following long-term storage.
Collapse
|
6
|
Idda A, Bebbere D, Corona G, Masala L, Casula E, Cincotti A, Ledda S. Insights on Cryopreserved Sheep Fibroblasts by Cryomicroscopy and Gene Expression Analysis. Biopreserv Biobank 2017; 15:310-320. [PMID: 28328240 DOI: 10.1089/bio.2016.0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cryopreservation includes a set of techniques aimed at storing biological samples and preserving their biochemical and functional features without any significant alterations. This study set out to investigate the effects induced by cryopreservation on cultured sheepskin fibroblasts (CSSF) through cryomicroscopy and gene expression analysis after subsequent in vitro culture. CSSF cells were cryopreserved in a cryomicroscope (CM) or in a straw programmable freezer (SPF) using a similar thermal profile (cooling rate -5°C/min to -120°C, then -150°C/min to -196°C). CSSF volume and intracellular ice formation (IIF) were monitored by a CM, while gene expression levels were investigated by real-time polymerase chain reaction in SPF-cryopreserved cells immediately after thawing (T0) and after 24 or 48 hours (T24, T48) of post-thaw in vitro culture. No significant difference in cell viability was observed at T0 between CM and SPF samples, while both CM and SPF groups showed lower viability (p < 0.05) compared to the untreated control group. Gene expression analysis of cryopreserved CSSF 24 and 48 hours post-thawing showed a significant upregulation of the genes involved in protein folding and antioxidant mechanisms (HPS90b and SOD1), while a transient increase (p < 0.05) in the expression levels of OCT4, BCL2, and GAPDH was detected 24 hours post-thawing. Overall, our data suggest that cryostored CSSF need at least 24 hours to activate specific networks to promote cell readaptation.
Collapse
Affiliation(s)
- Antonella Idda
- 1 Dipartimento di Medicina Veterinaria, Sezione di Clinica Ostetrica e Ginecologia, Università di Sassari , Sassari, Italy
| | - Daniela Bebbere
- 1 Dipartimento di Medicina Veterinaria, Sezione di Clinica Ostetrica e Ginecologia, Università di Sassari , Sassari, Italy
| | - Giuseppina Corona
- 1 Dipartimento di Medicina Veterinaria, Sezione di Clinica Ostetrica e Ginecologia, Università di Sassari , Sassari, Italy
| | - Laura Masala
- 1 Dipartimento di Medicina Veterinaria, Sezione di Clinica Ostetrica e Ginecologia, Università di Sassari , Sassari, Italy
| | - Elisa Casula
- 2 Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari , Cagliari, Italy
| | - Alberto Cincotti
- 2 Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari , Cagliari, Italy
| | - Sergio Ledda
- 1 Dipartimento di Medicina Veterinaria, Sezione di Clinica Ostetrica e Ginecologia, Università di Sassari , Sassari, Italy
| |
Collapse
|
7
|
Potter EA, Dolgova EV, Proskurina AS, Efremov YR, Minkevich AM, Rozanov AS, Peltek SE, Nikolin VP, Popova NA, Seledtsov IA, Molodtsov VV, Zavyalov EL, Taranov OS, Baiborodin SI, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. Gene expression profiling of tumor-initiating stem cells from mouse Krebs-2 carcinoma using a novel marker of poorly differentiated cells. Oncotarget 2017; 8:9425-9441. [PMID: 28031533 PMCID: PMC5354742 DOI: 10.18632/oncotarget.14116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/15/2016] [Indexed: 12/18/2022] Open
Abstract
Using the ability of poorly differentiated cells to natively internalize fragments of extracellular double-stranded DNA as a marker, we isolated a tumorigenic subpopulation present in Krebs-2 ascites that demonstrated the features of tumor-inducing cancer stem cells. Having combined TAMRA-labeled DNA probe and the power of RNA-seq technology, we identified a set of 168 genes specifically expressed in TAMRA-positive cells (tumor-initiating stem cells), these genes remaining silent in TAMRA-negative cancer cells. TAMRA+ cells displayed gene expression signatures characteristic of both stem cells and cancer cells. The observed expression differences between TAMRA+ and TAMRA- cells were validated by Real Time PCR. The results obtained corroborated the biological data that TAMRA+ murine Krebs-2 tumor cells are tumor-initiating stem cells. The approach developed can be applied to profile any poorly differentiated cell types that are capable of immanent internalization of double-stranded DNA.
Collapse
Affiliation(s)
- Ekaterina A. Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Evgenia V. Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anastasia S. Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yaroslav R. Efremov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexandra M. Minkevich
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Aleksey S. Rozanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergey E. Peltek
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Valeriy P. Nikolin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nelly A. Popova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | | | - Vladimir V. Molodtsov
- Novosibirsk State University, Novosibirsk 630090, Russia
- Softberry Inc., New York 10549, USA
| | - Evgeniy L Zavyalov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Oleg S. Taranov
- The State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk 630559, Russia
| | - Sergey I. Baiborodin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexander A. Ostanin
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk 630099, Russia
| | - Elena R. Chernykh
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk 630099, Russia
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergey S. Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
8
|
Argon A, Şener A, Zekioğlu O, Kapkaç M, Özdemir N. The effect of freezing on the immunoprofile of breast carcinoma cells. Balkan Med J 2015; 31:335-9. [PMID: 25667788 DOI: 10.5152/balkanmedj.2014.14389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/31/2014] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Intraoperative frozen section procedure may be required in some operations performed for breast masses. AIMS We investigated the effect of frozen section procedure on the immunoprofile of breast carcinoma cells. STUDY DESIGN Cross-sectional study. METHODS A total of 53 breast carcinoma cases evaluated with intraoperative frozen sections were included in this study. Immunohistochemically, oestrogen (ER), progesterone (PR) and HER2 primary antibodies were evaluated in both frozen and non-frozen sections of each tumour sample. RESULTS No difference was found between the frozen and non-frozen sections in 33 cases in terms of staining rate and intensity of ER, PR and HER2. A decrease was found in the ER, PR and HER2 staining rate (in 10 cases, 9 cases and 6 cases, respectively). Likewise, a decrease was detected in ER, PR and HER2 staining intensity in 6 patients for each. Although there was no staining in frozen sections, immunopositivity was observed in 3 non-frozen sections for ER, in 2 for PR and in 5 for HER2. Statistically, a significant difference was found between the frozen and non-frozen sections in terms of staining rate and intensity for each of the three markers. CONCLUSION In this study, the frozen section procedure in breast carcinoma had a negative effect on the immunoprofile. However, considering the importance of hormone receptor status in the treatment, these results should be supported with larger series.
Collapse
Affiliation(s)
- Asuman Argon
- Department of Pathology, İzmir Bozyaka Training and Research Hospital, İzmir, Turkey
| | - Alper Şener
- Department of Pathology, Ege University Faculty of Medicine, İzmir, Turkey
| | - Osman Zekioğlu
- Department of Pathology, Ege University Faculty of Medicine, İzmir, Turkey
| | - Murat Kapkaç
- Department of General Surgery, Ege University Faculty of Medicine, İzmir, Turkey
| | - Necmettin Özdemir
- Department of Pathology, Ege University Faculty of Medicine, İzmir, Turkey
| |
Collapse
|
9
|
Integration, Networking, and Global Biobanking in the Age of New Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 864:1-9. [DOI: 10.1007/978-3-319-20579-3_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Liao S, Xiao S, Zhu G, Zheng D, He J, Pei Z, Li G, Zhou Y. CD38 is highly expressed and affects the PI3K/Akt signaling pathway in cervical cancer. Oncol Rep 2014; 32:2703-9. [PMID: 25310288 DOI: 10.3892/or.2014.3537] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/02/2014] [Indexed: 11/06/2022] Open
Abstract
Cervical cancer is the second most common cancer and the fifth most deadly malignancy in females worldwide, affecting 500,000 individuals each year. It is the leading cause of cancer mortality among women in developing countries. Dysregulated activation of genes, such as CD44, SOX9 and SKP2, plays a role in cervical cancer. CD38 is known to be involved in activities typical of cell surface receptors, such as signaling for activation and proliferation events and heterotypic cell adhesion. CD38 contributes to disease progression and relapse in certain tumors, such as acute myeloid and chronic lymphocytic leukemia. To the best of our knowledge, there is currently no report on the relationship between CD38 and cervical cancer. Using qPCR, immunohistochemistry, and western blot analysis, the expression levels of CD38 were investigated and found to be upregulated in cervical cancer. CD38 was correlated with dysregulation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway in cervical cancer tissues in vitro. At the same time, CD38 overexpression affected the expression of PI3K, Akt, MDM2 and p53 in vivo. The results of the present study suggested that CD38 is highly expressed in cervical carcinoma tissues and play an important role in dysregulation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Shan Liao
- Hunan Provincial Tumor Hospital and The Tumor Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Guangchao Zhu
- Hunan Provincial Tumor Hospital and The Tumor Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Danwei Zheng
- Hunan Provincial Tumor Hospital and The Tumor Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Junyu He
- Hunan Provincial Tumor Hospital and The Tumor Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhen Pei
- Hunan Provincial Tumor Hospital and The Tumor Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Guiyuan Li
- Hunan Provincial Tumor Hospital and The Tumor Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yanhong Zhou
- Hunan Provincial Tumor Hospital and The Tumor Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
11
|
Karimi-Busheri F, Rasouli-Nia A, Zadorozhny V, Fakhrai H. CD24+/CD38- as new prognostic marker for non-small cell lung cancer. Multidiscip Respir Med 2013; 8:65. [PMID: 24094028 PMCID: PMC3844723 DOI: 10.1186/2049-6958-8-65] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/31/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Lung cancer is the leading cause of death among cancers in the world. The annual death toll due to this disease exceeds the combined deaths caused by colon, breast, prostate, and pancreatic cancers. As a result, there has been a tremendous effort to identify new biomarkers for early detection and diagnosis of lung cancer. METHODS In this study we report the results of screening a panel of eight non-small cell lung cancer (NSCLC) cell lines originating from different subtypes of lung cancer in an attempt to identify potential biomarkers unique to this disease. We used real-time polymerase chain reaction and flow cytometry techniques to analyze the expression of ALDHA1, EpCAM, CD133, CD24, and CD38 in this panel. RESULTS We demonstrate for the first time that the majority of NSCLC cells do not express levels of CD38 that would qualify it as a new biomarker for the disease. In contrast, we found that CD24 is over-expressed in 6 out of 8 of the cell lines. The combined CD24+/CD38-/low phenotype was detected in 50% of the cell lines that are also positive for CD133 and EpCAM. CONCLUSIONS We report that CD24+/CD38-/low signature could potentially be used as a new biomarker for the early detection of NSCLC.
Collapse
|
12
|
Janetschek G, Weitzel D, Stein W, Müntefering H, Alken P. Prenatal diagnosis of neuroblastoma by sonography. Urology 1984; 38:93. [PMID: 30791957 PMCID: PMC6385443 DOI: 10.1186/s13046-019-1109-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 02/15/2019] [Indexed: 12/24/2022]
Abstract
Background Zoledronic acid is the most potent osteoclast inhibitor and is widely used for advanced cancer patients with bone metastasis, but its role on cancer stem cells (CSCs) remains unclear. In the present study, we aimed to identify the stemness phenotypic characteristics of CSCs derived from cervical cancer cells and explore the anti-cancer efficiency of zoledronic acid on these cells, as well as the possible molecular mechanisms. Methods Stemness phenotypic identification of cervical cancer cells derived CSCs was performed via sphere formation efficiency (SFE), tumorigenesis, immunofluorescence staining, Transwell assay, and western blot. Anti-cancer efficiency of zoledronic acid on these cells (including proliferation, stemness phenotype, apoptosis, and cell cycle) was carried out through MTT assay, SFE, transwell, DAPI staining, flow cytometry, immunofluorescence, TUNEL staining, and western blot, both in vitro and in vivo. Results Enhanced self-renewal ability, including SFE and tumorigenesis, was verified in cervical cancer cells derived CSCs compared to parental cervical cancer cells. Specifically, the expression of ALDH1, Sox2, CD49f, Nanog, and Oct4 was significantly up-regulated in cervical cancer cells derived CSCs. Furthermore, enhanced migratory ability was observed in these cells along with up-regulated N-cadherin and Vimentin and down-regulated E-cadherin. Zoledronic acid inhibited cervical cancer cells derived CSCs proliferation in vitro and in vivo. The stemness phenotype of these CSCs including tumor sphere formation, migration, as well as the expression of the aforementioned associated markers was also suppressed. In addition, zoledronic acid significantly induced apoptosis and cell cycle arrest of cervical cancer cells derived CSCs in a dose-dependent manner. Mechanistically, the expression of phosphorylated Erk1/2 and Akt was significantly increased in cervical cancer cells derived CSCs compared to parental cervical cancer cells. Zoledronic acid inhibited phosphorylated Erk1/2 and Akt in cervical cancer cells derived CSCs. IGF-1, a potent stimulator for Erk1/2 and PI3K/Akt, attenuated the aforementioned anti-cancer effect of zoledronic acid. Conclusions Zoledronic acid inhibited the growth of cervical cancer cells derived CSCs through attenuating their stemness phenotype, inducing apoptosis, and arresting cell cycle. The suppression of phosphorylated Erk1/2 and Akt was involved in this process. Electronic supplementary material The online version of this article (10.1186/s13046-019-1109-z) contains supplementary material, which is available to authorized users.
Collapse
|