1
|
Wang X, Li F, Wu S, Xing W, Fu J, Wang R, He Y. Research progress on optimization of in vitro isolation, cultivation and preservation methods of dental pulp stem cells for clinical application. Front Bioeng Biotechnol 2024; 12:1305614. [PMID: 38633667 PMCID: PMC11021638 DOI: 10.3389/fbioe.2024.1305614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Due to high proliferative capacity, multipotent differentiation, immunomodulatory abilities, and lack of ethical concerns, dental pulp stem cells (DPSCs) are promising candidates for clinical application. Currently, clinical research on DPSCs is in its early stages. The reason for the failure to obtain clinically effective results may be problems with the production process of DPSCs. Due to the different preparation methods and reagent formulations of DPSCs, cell characteristics may be affected and lead to inconsistent experimental results. Preparation of clinical-grade DPSCs is far from ready. To achieve clinical application, it is essential to transit the manufacturing of stem cells from laboratory grade to clinical grade. This review compares and analyzes experimental data on optimizing the preparation methods of DPSCs from extraction to resuscitation, including research articles, invention patents and clinical trials. The advantages and disadvantages of various methods and potential clinical applications are discussed, and factors that could improve the quality of DPSCs for clinical application are proposed. The aim is to summarize the current manufacture of DPSCs in the establishment of a standardized, reliable, safe, and economic method for future preparation of clinical-grade cell products.
Collapse
Affiliation(s)
- Xinxin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Fenyao Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Shuting Wu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Wenbo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jiao Fu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Ruoxuan Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Mishra M, Raik S, Rattan V, Bhattacharyya S. Mitochondria transfer as a potential therapeutic mechanism in Alzheimer's disease-like pathology. Brain Res 2023; 1819:148544. [PMID: 37619852 DOI: 10.1016/j.brainres.2023.148544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by cognition decline and memory deterioration. The molecular pathogenic mechanism of AD is highly complex and still not completely clarified. While stem cell-based therapy for AD has been considered an optimal choice with specific properties however, immune rejection and risk of malignant transformation limit their therapeutic application. Growing evidence suggest that mitochondrial dysfunction has a critical role in the progression of AD. Since there have not been any effective treatment for AD, the drugs targeted to mitochondria may hold a great promise Therefore, the major objective of this study is to evaluate the therapeutic applicability of transplanting MSCderived mitochondria as a neuroprotective biomolecule in Alzheimer's disease pathology. The hallmarks of AD i.e aggregation of Aβ protein and Tau protein were generated to mimic the AD like pathology in vitro. Further, morphology analysis, cell viability assay, and immunofluorescence assay have been done for validation. Mitochondria were isolated from dental pulp stem cell (DPSC) and their effect on internalization by neural cells was demonstrated by cell proliferation analysis and uptake studies while their therapeutic potential was characterized by morphology analysis, ROS study, and immunofluorescence analysis. We observed that internalization of DPSC-derived mitochondria led to significant neuroprotective in the cellular AD. Based on our results, it may be concluded that mesenchymal stem cellderived mitochondria can emerge as a potentially safe and effective modality in Alzheimer's disease.
Collapse
Affiliation(s)
- Mohil Mishra
- Department of Biophysics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shalini Raik
- Department of Biophysics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vidya Rattan
- Oral Health Sciences Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
3
|
Raik S, Sharma P, Kumar S, Rattan V, Das A, Kumar N, Srinivasan R, Bhattacharyya S. Three-dimensional spheroid culture of dental pulp-derived stromal cells enhance their biological and regenerative properties for potential therapeutic applications. Int J Biochem Cell Biol 2023; 160:106422. [PMID: 37172928 DOI: 10.1016/j.biocel.2023.106422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/19/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Mesenchymal stem/stromal cell (MSC) spheroids generated in a three-dimensional (3D) culture system serve as a surrogate model that maintain stem cell characteristics since these mimic the in vivo behavior of cells and tissue more closely. Our study involved a detailed characterization of the spheroids generated in ultra-low attachment flasks. The spheroids were evaluated and compared for their morphology, structural integrity, viability, proliferation, biocomponents, stem cell phenotype and differentiation abilities with monolayer culture derived cells (2D culture). The in-vivo therapeutic efficacy of DPSCs derived from 2D and 3D culture was also assessed by transplanting them in an animal model of the critical-sized calvarial defect. DPSCs formed compact and well-organized multicellular spheroids when cultured in ultra-low attachment condition with superior stemness, differentiation, and regenerative abilities than monolayer cells. They maintained lower proliferative state and showed marked difference in the cellular biocomponents such as lipid, amide and nucleic acid between DPSCs from 2D and 3D cultures. The scaffold-free 3D culture efficiently preserves DPSCs intrinsic properties and functionality by maintaining them in the state close to the native tissues. The scaffold free 3D culture methods allow easy collection of a large number of multicellular spheroids of DPSCs and therefore, this can be adopted as a feasible and efficient method of generating robust spheroids for various in-vitro and in-vivo therapeutic applications.
Collapse
Affiliation(s)
- Shalini Raik
- Department of Biophysics, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, India
| | - Prakshi Sharma
- Department of Biophysics, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, India
| | - Saroj Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Vidya Rattan
- Unit of oral and maxillofacial surgery, Department of Oral Health Sciences, PGIMER, Chandigarh, India
| | - Ashim Das
- Department of Histopathology, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, India
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Radhika Srinivasan
- Department of Cytology and Gynecologic Pathology, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
4
|
Raik S, Thakur R, Rattan V, Kumar N, Pal A, Bhattacharyya S. Temporal Modulation of DNA Methylation and Gene Expression in Monolayer and 3D Spheroids of Dental Pulp Stem Cells during Osteogenic Differentiation: A Comparative Study. Tissue Eng Regen Med 2022; 19:1267-1282. [PMID: 36221017 PMCID: PMC9679125 DOI: 10.1007/s13770-022-00485-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Human mesenchymal stem cells are being used for various regenerative applications in past decades. This study chronicled a temporal profile of the transcriptional pattern and promoter methylation status of the osteogenic related gene in dental pulp stem cells (DPSCs) derived from 3-dimensional spheroid culture (3D) vis a vis 2-dimensional (2D) monolayer culture upon osteogenic induction. METHODS Biomimetic properties of osteogenesis were determined by alkaline phosphatase assay and alizarin red staining. Gene expression and promoter methylation status of osteogenic genes such as runt-related transcription factor-2, collagen1α1, osteocalcin (OCN), and DLX5 (distal-homeobox) were performed by qPCR assay and bisulfite sequencing, respectively. Furthermore, µ-Computed tomography (micro-CT) was performed to examine the new bone formation in critical-sized rat calvarial bone defect model. RESULTS Our results indicated a greater inclination of spheroid culture-derived DPSCs toward osteogenic lineage than the monolayer culture. The bisulfite sequencing of the promoter region of osteogenic genes revealed sustenance of low methylation levels in DPSCs during the progression of osteogenic differentiation. However, the significant difference in the methylation pattern between 2D and 3D derived DPSCs were identified only for OCN gene promoter. We observed differences in the mRNA expression pattern of epigenetic writers such as DNA methyltransferases (DNMTs) and methyl-cytosine dioxygenases (TET) between the two culture conditions. Further, the DPSC spheroids showed enhanced new bone formation ability in an animal model of bone defect compared to the cells cultivated in a 2D platform which further substantiated our in-vitro observations. CONCLUSION The distinct cellular microenvironment induced changes in DNA methylation pattern and expression of epigenetic regulators such as DNMTs and TETs genes may lead to increase expression of osteogenic markers in 3D spheroid culture of DPSCs which make DPSCs spheroids suitable for osteogenic regeneration compared to monolayers.
Collapse
Affiliation(s)
- Shalini Raik
- Department of Biophysics, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Reetu Thakur
- Department of Biochemistry, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Vidya Rattan
- Unit of Oral and Maxillofacial Surgery, Department of Oral Health Sciences, PGIMER, Chandigarh, India
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Arnab Pal
- Department of Biochemistry, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
5
|
Cultivation of Cryopreserved Human Dental Pulp Stem Cells—A New Approach to Maintaining Dental Pulp Tissue. Int J Mol Sci 2022; 23:ijms231911485. [PMID: 36232787 PMCID: PMC9570360 DOI: 10.3390/ijms231911485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
Human dental pulp stem cells (hDPSCs) are multipotent mesenchymal stem cells (MSCs) that are capable of self-renewal with multilineage differentiation potential. After being cryopreserved, hDPSCs were reported to maintain a high level of proliferation and multi-differentiation abilities. In order to optimize cryopreservation techniques, decrease storage requirements and lower contamination risks, the feasibility of new whole-tooth cryopreservation and its effects on hDPSCs were tested. The survival rates, morphology, proliferation rates, cell activity, surface antigens and differentiation abilities of hDPSCs isolated from fresh teeth were compared with those of one-month cryopreserved teeth in 5% and 10% DMSO. The data of the present study indicated that the new cryopreservation approach did not reduce the capabilities or stemness of hDPSCs, with the exception that it extended the first appearance time of hDPSCs in the teeth that were cryopreserved in 10% DMSO, and reduced their recovery rate. With the novel strategy of freezing, the hDPSCs still expressed the typical surface markers of MSCs and maintained excellent proliferation capacity. Three consecutive weeks of osteogenic and adipogenic induction also showed that the expression of the key genes in hDPSCs, including lipoprotein lipase (LPL), peroxisome proliferator-activated receptor-γ (PPAR-γ), alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), type I collagen (COL I) and osteocalcin (OSC) was not affected, indicating that their differentiation abilities remained intact, which are crucial parameters for hDPSCs as cell-therapy candidates. These results demonstrated that the new cryopreservation method is low-cost and effective for the good preservation of hDPSCs without compromising cell performance, and can provide ideas and evidence for the future application of stem-cell therapies and the establishment of dental banks.
Collapse
|
6
|
Xiong W, Liu Y, Zhou H, Jing S, He Y, Ye Q. Alzheimer’s disease: Pathophysiology and dental pulp stem cells therapeutic prospects. Front Cell Dev Biol 2022; 10:999024. [PMID: 36187488 PMCID: PMC9520621 DOI: 10.3389/fcell.2022.999024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a destructive neurodegenerative disease with the progressive dysfunction, structural disorders and decreased numbers of neurons in the brain, which leads to long-term memory impairment and cognitive decline. There is a growing consensus that the development of AD has several molecular mechanisms similar to those of other neurodegenerative diseases, including excessive accumulation of misfolded proteins and neurotoxic substances produced by hyperactivated microglia. Nonetheless, there is currently a lack of effective drug candidates to delay or prevent the progression of the disease. Based on the excellent regenerative and reparative capabilities of stem cells, the application of them to repair or replace injured neurons carries enormous promise. Dental pulp stem cells (DPSCs), originated from ectomesenchyme of the cranial neural crest, hold a remarkable potential for neuronal differentiation, and additionally express a variety of neurotrophic factors that contribute to a protective effect on injured neuronal cells. Notably, DPSCs can also express immunoregulatory factors to control neuroinflammation and potentiate the regeneration and recovery of injured neurons. These extraordinary features along with accessibility make DPSCs an attractive source of postnatal stem cells for the regeneration of neurons or protection of existing neural circuitry in the neurodegenerative diseases. The present reviews the latest research advance in the pathophysiology of AD and elaborate the neurodifferentiation and neuroprotective properties of DPSCs as well as their application prospects in AD.
Collapse
Affiliation(s)
- Wei Xiong
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ye Liu
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Heng Zhou
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Shuili Jing
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- *Correspondence: Qingsong Ye, ; Yan He,
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- *Correspondence: Qingsong Ye, ; Yan He,
| |
Collapse
|
7
|
Kumar A, Mahajan A, Kumari P, Singh J, Raik S, Saha L, Pal A, Medhi B, Rattan V, Bhattacharyya S. Dental pulp stem cell secretome ameliorates
d
‐galactose induced accelerated aging in rat model. Cell Biochem Funct 2022; 40:535-545. [DOI: 10.1002/cbf.3723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Ajay Kumar
- Department of Biophysics PGIMER Chandigarh India
| | | | - Puja Kumari
- Department of Pharmacology PGIMER Chandigarh India
| | - Jagjit Singh
- Department of Pharmacology PGIMER Chandigarh India
| | - Shalini Raik
- Department of Biophysics PGIMER Chandigarh India
| | - Lekha Saha
- Department of Pharmacology PGIMER Chandigarh India
| | - Arnab Pal
- Department of Biochemistry PGIMER Chandigarh India
| | - Bikash Medhi
- Department of Pharmacology PGIMER Chandigarh India
| | - Vidya Rattan
- Unit of Oral and Maxillofacial Surgery, Department of Oral Health Sciences PGIMER Chandigarh India
| | | |
Collapse
|
8
|
Pilbauerova N, Schmidt J, Soukup T, Prat T, Nesporova K, Velebny V, Suchanek J. Innovative Approach in the Cryogenic Freezing Medium for Mesenchymal Stem Cells. Biomolecules 2022; 12:610. [PMID: 35625538 PMCID: PMC9138570 DOI: 10.3390/biom12050610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023] Open
Abstract
The physical stresses during cryopreservation affect stem cell survival and further proliferation. To minimize or prevent cryoinjury, cryoprotective agents (CPAs) are indispensable. Despite the widespread use of 10% dimethyl sulfoxide (DMSO), there are concerns about its potential adverse effects. To bypass those effects, combinations of CPAs have been investigated. This study aimed to verify whether high-molecular-hyaluronic acid (HMW-HA) serves as a cryoprotectant when preserving human mesenchymal stem cells (hMSCs) to reduce the DMSO concentration in the cryopreservation medium. We studied how 0.1% or 0.2% HMW-HA combined with reduced DMSO concentrations (from 10% to 5%, and 3%) affected total cell count, viability, immunophenotype, and differentiation potential post-cryopreservation. Immediately after cell revival, the highest total cell count was observed in 10% DMSO-stored hMSC. However, two weeks after cell cultivation an increased cell count was seen in the HMW-HA-stored groups along with a continued increase in hMSCs stored using 3% DMSO and 0.1% HMW-HA. The increased total cell count corresponded to elevated expression of stemness marker CD49f. The HA-supplemented cryomedium did not affect the differential potential of hMSC. Our results will participate in producing a ready-to-use product for cryopreservation of mesenchymal stem cells.
Collapse
Affiliation(s)
- Nela Pilbauerova
- Department of Dentistry, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic; (N.P.); (J.S.); (J.S.)
| | - Jan Schmidt
- Department of Dentistry, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic; (N.P.); (J.S.); (J.S.)
| | - Tomas Soukup
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 50003 Hradec Kralove, Czech Republic;
| | - Tomas Prat
- Contipro a.s., Dolni Dobrouc 401, 56102 Dolni Dobrouc, Czech Republic; (K.N.); (V.V.)
| | - Kristina Nesporova
- Contipro a.s., Dolni Dobrouc 401, 56102 Dolni Dobrouc, Czech Republic; (K.N.); (V.V.)
| | - Vladimir Velebny
- Contipro a.s., Dolni Dobrouc 401, 56102 Dolni Dobrouc, Czech Republic; (K.N.); (V.V.)
| | - Jakub Suchanek
- Department of Dentistry, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic; (N.P.); (J.S.); (J.S.)
| |
Collapse
|
9
|
Kumar A, Yun H, Funderburgh ML, Du Y. Regenerative therapy for the Cornea. Prog Retin Eye Res 2022; 87:101011. [PMID: 34530154 PMCID: PMC8918435 DOI: 10.1016/j.preteyeres.2021.101011] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
The cornea is the outmost layer of the eye, unique in its transparency and strength. The cornea not only transmits the light essential for vision, also refracts light, giving focus to images. Each of the three layers of the cornea has properties essential for the function of vision. Although the epithelium can often recover from injury quickly by cell division, loss of limbal stem cells can cause severe corneal surface abnormalities leading to corneal blindness. Disruption of the stromal extracellular matrix and loss of cells determining this structure, the keratocytes, leads to corneal opacity. Corneal endothelium is the inner part of the cornea without self-renewal capacity. It is very important to maintain corneal dehydration and transparency. Permanent damage to the corneal stroma or endothelium can be effectively treated by corneal transplantation; however, there are drawbacks to this procedure, including a shortage of donors, the need for continuing treatment to prevent rejection, and limits to the survival of the graft, averaging 10-20 years. There exists a need for new strategies to promote regeneration of the stromal structure and restore vision. This review highlights critical contributions in regenerative medicine with the aim of corneal reconstruction after injury or disease. These approaches include corneal stromal stem cells, corneal limbal stem cells, embryonic stem cells, and other adult stem cells, as well as induced pluripotent stem cells. Stem cell-derived trophic factors in the forms of secretomes or exosomes for corneal regeneration are also discussed. Corneal sensory nerve regeneration promoting corneal transparency is discussed. This article provides description of the up-to-date options for corneal regeneration and presents exciting possible avenues for future studies toward clinical applications for corneal regeneration.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Hongmin Yun
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
10
|
Mesenchymal Stem Cells Based Treatment in Dental Medicine: A Narrative Review. Int J Mol Sci 2022; 23:ijms23031662. [PMID: 35163584 PMCID: PMC8836082 DOI: 10.3390/ijms23031662] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Application of mesenchymal stem cells (MSC) in regenerative therapeutic procedures is becoming an increasingly important topic in medicine. Since the first isolation of dental tissue-derived MSC, there has been an intense investigation on the characteristics and potentials of these cells in regenerative dentistry. Their multidifferentiation potential, self-renewal capacity, and easy accessibility give them a key role in stem cell-based therapy. So far, several different dental stem cell types have been discovered and their potential usage is found in most of the major dental medicine branches. These cells are also researched in multiple fields of medicine for the treatment of degenerative and inflammatory diseases. In this review, we summarized dental MSC sources and analyzed their treatment modalities with particular emphasis on temporomandibular joint osteoarthritis (TMJ OA).
Collapse
|
11
|
Staniowski T, Zawadzka-Knefel A, Skośkiewicz-Malinowska K. Therapeutic Potential of Dental Pulp Stem Cells According to Different Transplant Types. Molecules 2021; 26:7423. [PMID: 34946506 PMCID: PMC8707085 DOI: 10.3390/molecules26247423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022] Open
Abstract
Stem cells are unspecialised cells capable of perpetual self-renewal, proliferation and differentiation into more specialised daughter cells. They are present in many tissues and organs, including the stomatognathic system. Recently, the great interest of scientists in obtaining stem cells from human teeth is due to their easy availability and a non-invasive procedure of collecting the material. Three key components are required for tissue regeneration: stem cells, appropriate scaffold material and growth factors. Depending on the source of the new tissue or organ, there are several types of transplants. In this review, the following division into four transplant types is applied due to genetic differences between the donor and the recipient: xenotransplantation, allotransplantation, autotransplantation and isotransplantation (however, due to the lack of research, type was not included). In vivo studies have shown that Dental Pulp Stem Cells (DPSCs)can form a dentin-pulp complex, nerves, adipose, bone, cartilage, skin, blood vessels and myocardium, which gives hope for their use in various biomedical areas, such as immunotherapy and regenerative therapy. This review presents the current in vivo research and advances to provide new biological insights and therapeutic possibilities of using DPSCs.
Collapse
Affiliation(s)
| | - Anna Zawadzka-Knefel
- Department of Conservative Dentistry with Endodontics, Wroclaw Medical University, 50-425 Wrocław, Poland; (T.S.); (K.S.-M.)
| | | |
Collapse
|
12
|
Maxillofacial-Derived Mesenchymal Stem Cells: Characteristics and Progress in Tissue Regeneration. Stem Cells Int 2021; 2021:5516521. [PMID: 34426741 PMCID: PMC8379387 DOI: 10.1155/2021/5516521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Maxillofacial-derived mesenchymal stem cells (MFSCs) are a particular collective type of mesenchymal stem cells (MSCs) that originate from the hard and soft tissue of the maxillofacial region. Recently, many types of MFSCs have been isolated and characterized. MFSCs have the common characteristics of being extremely accessible and amazingly multipotent and thus have become a promising stem cell resource in tissue regeneration. However, different MFSCs can give rise to different cell lineages, have different advantages in clinical use, and regulate the immune and inflammation microenvironment through paracrine mechanisms in different ways. Hence, in this review, we will concentrate on the updated new findings of all types of MFSCs in tissue regeneration and also introduce the recently discovered types of MFSCs. Important issues about proliferation and differentiation in vitro and in vivo, up-to-date clinical application, and paracrine effect of MFSCs in tissue regeneration will also be discussed. Our review may provide a better guide for the clinical use of MFSCs and further direction of research in MFSC regeneration medicine.
Collapse
|
13
|
Khaseb S, Orooji M, Pour MG, Safavi SM, Eghbal MJ, Rezai Rad M. Dental stem cell banking: Techniques and protocols. Cell Biol Int 2021; 45:1851-1865. [PMID: 33979004 DOI: 10.1002/cbin.11626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/21/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022]
Abstract
Dental tissue-derived stem cells (DSCs) provide an easy, accessible, relatively noninvasive promising source of adult stem cells (ASCs), which brought encouraging prospective for their clinical applications. DSCs provide a perfect opportunity to apply for a patient's own ASC, which poses a low risk of immune rejection. However, problems associated with the long-term culture of stem cells, including loss of proliferation and differentiation capacities, senescence, genetic instability, and the possibility of microbial contamination, make cell banking necessary. With the rapid development of advanced cryopreservation technology, various international DSC banks have been established for both research and clinical applications around the world. However, few studies have been published that provide step-by-step guidance on DSCs isolation and banking methods. The purpose of this review is to present protocols and technical details for all steps of cryopreserved DSCs, from donor selection, isolation, cryopreservation, to characterization and quality control. Here, the emphasis is on presenting practical principles in accordance with the available valid guidelines.
Collapse
Affiliation(s)
- Sanaz Khaseb
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran
| | - Mahdi Orooji
- Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran
| | - Majid Ghasemian Pour
- Research Institute for Dental Sciences, Dental Research Center, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammadreza Safavi
- Research Institute for Dental Sciences, Dental Research Center, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Jafar Eghbal
- Research Institute for Dental Sciences, Dental Research Center, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezai Rad
- Research Institute for Dental Sciences, Dental Research Center, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Paes SM, Pupo YM, Cavenago BC, Fonseca-Silva T, Santos CCDO. Cryopreservation of mesenchymal stem cells derived from dental pulp: a systematic review. Restor Dent Endod 2021; 46:e26. [PMID: 34123762 PMCID: PMC8170376 DOI: 10.5395/rde.2021.46.e26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 11/11/2022] Open
Abstract
Objectives The aim of the present systematic review was to investigate the cryopreservation process of dental pulp mesenchymal stromal cells and whether cryopreservation is effective in promoting cell viability and recovery. Materials and Methods This systematic review was developed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and the research question was determined using the population, exposure, comparison, and outcomes strategy. Electronic searches were conducted in the PubMed, Cochrane Library, Science Direct, LILACS, and SciELO databases and in the gray literature (dissertations and thesis databases and Google Scholar) for relevant articles published up to March 2019. Clinical trial studies performed with dental pulp of human permanent or primary teeth, containing concrete information regarding the cryopreservation stages, and with cryopreservation performed for a period of at least 1 week were included in this study. Results The search strategy resulted in the retrieval of 185 publications. After the application of the eligibility criteria, 21 articles were selected for a qualitative analysis. Conclusions The cryopreservation process must be carried out in 6 stages: tooth disinfection, pulp extraction, cell isolation, cell proliferation, cryopreservation, and thawing. In addition, it can be inferred that the use of dimethyl sulfoxide, programmable freezing, and storage in liquid nitrogen are associated with a high rate of cell viability after thawing and a high rate of cell proliferation in both primary and permanent teeth.
Collapse
Affiliation(s)
- Sabrina Moreira Paes
- Department of Restorative Dentistry, Universidade Federal do Paraná, Curitiba/PR, Brazil
| | - Yasmine Mendes Pupo
- Department of Restorative Dentistry, Universidade Federal do Paraná, Curitiba/PR, Brazil
| | | | - Thiago Fonseca-Silva
- Department of Dentistry, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina/MG, Brazil
| | - Carolina Carvalho de Oliveira Santos
- Department of Restorative Dentistry, Universidade Federal do Paraná, Curitiba/PR, Brazil.,Department of Dentistry, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina/MG, Brazil
| |
Collapse
|
15
|
The Effects of Cryogenic Storage on Human Dental Pulp Stem Cells. Int J Mol Sci 2021; 22:ijms22094432. [PMID: 33922674 PMCID: PMC8122943 DOI: 10.3390/ijms22094432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Dental pulp stem cells (DPSCs) are a type of easily accessible adult mesenchymal stem cell. Due to their ease of access, DPSCs show great promise in regenerative medicine. However, the tooth extractions from which DPSCs can be obtained are usually performed at a period of life when donors would have no therapeutic need of them. For this reason, it is imperative that successful stem cell storage techniques are employed so that these cells remain viable for future use. Any such techniques must result in high post-thaw stem cell recovery without compromising stemness, proliferation, or multipotency. Uncontrolled-rate freezing is not a technically or financially demanding technique compared to expensive and laborious controlled-rate freezing techniques. This study was aimed at observing the effect of uncontrolled-rate freezing on DPSCs stored for 6 and 12 months. Dimethyl sulfoxide at a concentration of 10% was used as a cryoprotective agent. Various features such as shape, proliferation capacity, phenotype, and multipotency were studied after DPSC thawing. The DPSCs did not compromise their stemness, viability, proliferation, or differentiating capabilities, even after one year of cryopreservation at −80 °C. After thawing, they retained their stemness markers and low-level expression of hematopoietic markers. We observed a size reduction in recovery DPSCs after one year of storage. This observation indicates that DPSCs can be successfully used in potential clinical applications, even after a year of uncontrolled cryopreservation.
Collapse
|
16
|
Modulation of the Dental Pulp Stem Cell Secretory Profile by Hypoxia Induction Using Cobalt Chloride. J Pers Med 2021; 11:jpm11040247. [PMID: 33808091 PMCID: PMC8066657 DOI: 10.3390/jpm11040247] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
The action of stem cells is mediated by their paracrine secretions which comprise the secretory profile. Various approaches can be used to modify the secretory profile of stem cells. Creating a hypoxic environment is one method. The present study aims to demonstrate the influence of CoCl2 in generating hypoxic conditions in a dental pulp stem cell (DPSCs) culture, and the effect of this environment on their secretory profile. DPSCs that were isolated from human permanent teeth were characterized and treated with different concentrations of CoCl2 to assess their viability by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and proliferation by a cell counting kit (CCK)-8 assay. The gene expression level of hypoxia-inducible factor 1-alpha (HIF-1α) was analyzed by quantitative real time polymerase chain reaction (qRT-PCR) to demonstrate a hypoxic environment. Comparative evaluation of the growth factors and cytokines were done by cytometric bead array. Gene expression levels of transcription factors OCT4 and SOX2 were analyzed by qRT-PCR to understand the effect of CoCl2 on stemness in DPSCs. DPSCs were positive for MSC-specific markers. Doses of CoCl2, up to 20 µM, did not negatively affect cell viability; in low doses (5 µM), it promoted cell survival. Treatment with 10 µM of CoCl2 significantly augmented the genetic expression of HIF-1α. Cells treated with 10 µM of CoCl2 showed changes in the levels of growth factors and cytokines produced. It was very evident that CoCl2 also increased the expression of OCT4 and SOX2, which is the modulation of stemness of DPSCs. A CoCl2 treatment-induced hypoxic environment modulates the secretory profile of DPSCs.
Collapse
|
17
|
Cryopreservation of peripheral blood mononuclear cells using uncontrolled rate freezing. Cell Tissue Bank 2020; 21:631-641. [PMID: 32809089 DOI: 10.1007/s10561-020-09857-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 08/08/2020] [Indexed: 12/25/2022]
Abstract
Peripheral blood mononuclear cells are widely used as source material for anticancer immunotherapies. The conventional cryopreservation method for peripheral blood mononuclear cells is time-consuming and expansive, which involves controlled rate freezing followed by storage in liquid nitrogen. Instead, the convenient uncontrolled rate freezing cryopreservation method had been reported successfully in peripheral blood hematopoietic stem cells and peripheral blood progenitor cells. Therefore, we hypothesized that uncontrolled rate freezing cooling method maybe also applied to peripheral blood mononuclear cells cryopreservation. In this study, we evaluated the performance of uncontrolled rate freezing and controlled rate freezing cooling methods through cell recovery rate, viability, differentiation potential into cytokine-induced killer cells and the cellular properties of the cultured cytokine-induced killer cells. The results showed similar post-thaw viability and recovery rate in both controlled rate freezing and uncontrolled rate freezing cryopreserved peripheral blood mononuclear cells. Importantly, the uncontrolled rate freezing cryopreserved peripheral blood mononuclear cells exhibited higher growth ratio and earlier cell clustering during ex-vivo cytokine-induced killer cell culture than the controlled rate freezing ones. These two groups of expanded cytokine-induced killer cells also exhibited similar effector cell subset ratio and tumoricidal activity. In general, the performance of cryopreserved peripheral blood mononuclear cells using uncontrolled rate freezing cooling method, with the commercial cryoprotective agent CellBanker 2, was equal or better than the controlled rate freezing method. Our study implied that the combined use of cryoprotective agent CellBanker 2 and uncontrolled rate freezing could be a convenient cryopreservation method for peripheral blood mononuclear cells.
Collapse
|
18
|
Fracaro L, Senegaglia AC, Herai RH, Leitolis A, Boldrini-Leite LM, Rebelatto CLK, Travers PJ, Brofman PRS, Correa A. The Expression Profile of Dental Pulp-Derived Stromal Cells Supports Their Limited Capacity to Differentiate into Adipogenic Cells. Int J Mol Sci 2020; 21:E2753. [PMID: 32326648 PMCID: PMC7215853 DOI: 10.3390/ijms21082753] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) can self-renew, differentiate into specialised cells and have different embryonic origins-ectodermal for dental pulp-derived MSCs (DPSCs) and mesodermal for adipose tissue-derived MSCs (ADSCs). Data on DPSCs adipogenic differentiation potential and timing vary, and the lack of molecular and genetic information prompted us to gain a better understanding of DPSCs adipogenic differentiation potential and gene expression profile. While DPSCs differentiated readily along osteogenic and chondrogenic pathways, after 21 days in two different types of adipogenic induction media, DPSCs cultures did not contain lipid vacuoles and had low expression levels of the adipogenic genes proliferator-activated receptor gamma (PPARG), lipoprotein lipase (LPL) and CCAAT/enhancer-binding protein alpha (CEBPA). To better understand this limitation in adipogenesis, transcriptome analysis in undifferentiated DPSCs was carried out, with the ADSC transcriptome used as a positive control. In total, 14,871 transcripts were common to DPSCs and ADSCs, some were unique (DPSCs: 471, ADSCs: 1032), and 510 were differentially expressed genes. Detailed analyses of overrepresented transcripts showed that DPSCs express genes that inhibit adipogenic differentiation, revealing the possible mechanism for their limited adipogenesis.
Collapse
Affiliation(s)
- Letícia Fracaro
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba, Parana 80215-901, Brazil; (L.F.); (A.C.S.); (L.M.B.-L.); (C.L.K.R.)
| | - Alexandra C. Senegaglia
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba, Parana 80215-901, Brazil; (L.F.); (A.C.S.); (L.M.B.-L.); (C.L.K.R.)
| | - Roberto H. Herai
- Graduate Program in Health Sciences (PPGCS), School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba, Parana 80215-901, Brazil;
| | - Amanda Leitolis
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-Parana, Curitiba, Parana 81350-010, Brazil;
| | - Lidiane M. Boldrini-Leite
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba, Parana 80215-901, Brazil; (L.F.); (A.C.S.); (L.M.B.-L.); (C.L.K.R.)
| | - Carmen L. K. Rebelatto
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba, Parana 80215-901, Brazil; (L.F.); (A.C.S.); (L.M.B.-L.); (C.L.K.R.)
| | - Paul J. Travers
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, Scotland, UK;
| | - Paulo R. S. Brofman
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba, Parana 80215-901, Brazil; (L.F.); (A.C.S.); (L.M.B.-L.); (C.L.K.R.)
| | - Alejandro Correa
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-Parana, Curitiba, Parana 81350-010, Brazil;
| |
Collapse
|
19
|
Zeitlin BD. Banking on teeth - Stem cells and the dental office. Biomed J 2020; 43:124-133. [PMID: 32381462 PMCID: PMC7283549 DOI: 10.1016/j.bj.2020.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/29/2020] [Accepted: 02/12/2020] [Indexed: 12/23/2022] Open
Abstract
Science and commerce advance together and the stem cell field is no exception. With the promise of cures for conditions as diverse as cancer, autism, neural degeneration, organ replacement and addiction, long-term preservation of dental stem cells is a growth market. The discovery nearly twenty years ago, of viable, multipotent, stem cells in dental pulp from both baby and adult teeth initiated, and drives, this market.The dental stem cell preservation services, "tooth banks", focus on the collection of a child's baby teeth, as they are shed naturally, and storage of the stem cells from within the pulp for therapeutic use in later years should the child require them. This review focuses on the procedures related to these stem cell storage services and may serve as an introduction for many to the practice of "tooth banking".
Collapse
Affiliation(s)
- Benjamin D Zeitlin
- University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, USA.
| |
Collapse
|
20
|
Kumar A, Xu Y, Du Y. Stem Cells from Human Trabecular Meshwork Hold the Potential to Develop into Ocular and Non-Ocular Lineages After Long-Term Storage. Stem Cells Dev 2020; 29:49-61. [PMID: 31680626 PMCID: PMC6931915 DOI: 10.1089/scd.2019.0169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/01/2019] [Indexed: 01/10/2023] Open
Abstract
Stem cells from the eye hold a great potential for vision restoration and can also be used for regeneration in other tissues. In this study, we characterized the stem cell properties of Trabecular meshwork stem cells (TMSCs) after long-term cryopreservation (∼8 years). TMSCs derived from four donors were examined for their viability and proliferation, as well as stem cell marker expression. Spheroid formation, colony formation, and multipotency were investigated. We observed that TMSCs were fully viable with variable proliferation ability. They expressed the stem cell markers CD90, CD166, CD105, CD73, OCT4, SSEA4, Notch1, KLF4, ABCG2, Nestin, and HNK1 detected by flow cytometry, quantitative polymerase chain reaction, or immunofluorescent staining. They could form spheroids and colonies after thawing. All TMSCs were able to differentiate into osteocytes, neural cells, and trabecular meshwork (TM) cells, but not adipocytes. Differentiated TM cells responded to dexamethasone treatment with increased expression of myocilin and angiopoietin-like 7 (ANGPTL7). In a nutshell, our study demonstrated that TMSCs retain their stem cell properties after long-term cryopreservation and hence can be an effective cell therapy source for various clinical applications.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yi Xu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Assessment of Post-thaw Quality of Dental Mesenchymal Stromal Cells After Long-Term Cryopreservation by Uncontrolled Freezing. Appl Biochem Biotechnol 2019; 191:728-743. [PMID: 31853872 DOI: 10.1007/s12010-019-03216-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022]
Abstract
Cryopreservation abilities of dental tissue-derived mesenchymal stromal cells (DMSCs) including dental pulp stem cells (DPSCs) and dental follicle stem cells (DFSC) play an important role in the applications of these cells in clinical settings. In this context, we checked whether storage at - 80 °C in 10% DMSO for a longer period has any adverse effect on the functionality and genetic stability. We carried our studies on DPSC and DFSC samples that were revived after a maximum of 5 years of cryopreservation. We observed that even after long-term uncontrolled freezing at - 80 °C, these cells survived and proliferated efficiently. The assessment was made based on their post-thaw morphology, immunophenotypes, differentiation potential, growth kinetics, and genetic features. These cells retained the expression of stemness markers, differentiation ability and maintained their normal karyotype. Our results indicated no significant morphological or immunophenotypic differences between the cryopreserved DMSCs and the fresh DMSCs. Our study implies that mesenchymal stromal cells derived from the dental tissue origin are very robust and do not require any sophisticated preservation protocols. Thus, these can be an ideal source for research, stem cell banking, as well as successful clinical applications in tissue engineering and cell-based therapeutics. Graphical Abstract Schematic diagram showing the cryopreservation of DMSCs by uncontrolled freezing at -80 c has no adverse effects on their functionality and genetic stability.
Collapse
|
22
|
Sun Y, Dos Santos A, Balayan A, Deng SX. Evaluation of Cryopreservation Media for the Preservation of Human Corneal Stromal Stem Cells. Tissue Eng Part C Methods 2019; 26:37-43. [PMID: 31686624 DOI: 10.1089/ten.tec.2019.0195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction: Human corneal stromal stem cells (CSSCs) have gained increasing attention in the treatment of corneal stromal scars. In view of this, the preparation and storage of CSSCs are critical to maintaining the regenerative potential of CSSCs. The goal of the study was to investigate the human serum (HS) concentration in the cryomedia that could best preserve CSSCs. Materials and Methods: Three different cryopreservation media, varying in HS concentration were evaluated in their ability to preserve the viability and phenotype of CSSCs: 2% HS (FS1), 4% HS (FS2), and 90% HS (FS3). After thawing, CSSCs morphology, recovery rate, cell proliferation, relative gene expression of CSSC markers (ABCG2, SOX2, NANOG, PAX6, and SIX3), and their anti-inflammatory response (level of TNFAIP6) were compared with those of unfrozen CSSCs (control). Results: Cryopreserved CSSCs had similar cell morphology as the control. Cell viability was significantly higher using FS2 (92.7 ± 1.3%) compared with FS1 (88 ± 0.8%, p = 0.018). Doubling times of CSSCs were maintained in all cryopreserved conditions, as in the control (p > 0.05), which were 0.9 ± 0.1 days and 1.8 ± 0.0 days at passages 3 and 4, then increased to 18.2 ± 1.9 days at passage 6 (p > 0.05). The expression level of stem cell/progenitor cell markers investigated was not affected by the cryopreservation with any of the three media. In addition, cryopreserved CSSCs have a similar expression level of TNFAIP6 after stimulation with proinflammatory cytokines as the control (p > 0.05). Conclusion: Our results indicated that all three cryopreservation media maintained CSSCs phenotype after undergoing one freezing/thawing cycle. Impact Statement Corneal stromal stem cells (CSSCs) offer an alternative for the treatment of corneal stromal scars. Cryopreservation of CSSCs is necessary as it enables feasibility of using CSSCs as a cell therapy candidate. The current study shows that media used to cryopreserve CSSCs could be optimized to maintain cell viability, phenotype, and potency of CSSCs after thawing.
Collapse
Affiliation(s)
- Yuzhao Sun
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, California.,Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Aurelie Dos Santos
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, California
| | - Alis Balayan
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, California
| | - Sophie X Deng
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
23
|
Kumar A, Xu Y, Yang E, Wang Y, Du Y. Fidelity of long-term cryopreserved adipose-derived stem cells for differentiation into cells of ocular and other lineages. Exp Eye Res 2019; 189:107860. [PMID: 31655040 DOI: 10.1016/j.exer.2019.107860] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 02/08/2023]
Abstract
Adipose-Derived Stem Cells (ADSCs) have an important contribution in regenerative medicine ranging from testing stem cell therapy for disease treatment in pre-clinical models to clinical trials. For immediate use of stem cells for therapy, there is a requirement of the high dose of stem cells at different time points which can be met by cryopreservation. In this study, we evaluated the characteristics of long-term cryopreserved ADSCs and their regenerative potential after an average of twelve-year cryopreservation. Revived ADSCs were examined for cell viability and proliferation by trypan blue, Calcein/Hoechst and MTT assay. Expression of stem cell markers was examined by flow cytometry, immunostaining and qPCR. Colony forming efficiency and spheroid formation ability were also assessed. Multilineage differentiation potential was evaluated by induction into osteocytes, adipocytes, neural cells, corneal keratocytes and trabecular meshwork (TM) cells. Post-thaw, ADSCs maintained expression of stem cell markers CD90, CD73, CD105, CD166, NOTCH1, STRO-1, ABCG2, OCT4, KLF4. ADSCs retained colony and spheroid forming potential. These cells were able to differentiate into osteocytes, confirmed by Alizarin Red S staining and elevated expression of osteocalcin and osteopontin; into adipocytes by Oil Red O staining and elevated expression of PPARγ2. ADSCs could differentiate into neural cells, stained positive to β-III tubulin, neurofilament, GFAP as well as elevated expression of nestin and neurofilament mRNAs. ADSCs could also give rise to corneal keratocytes expressing keratocan, keratan sulfate, ALDH and collagen V, and to TM cells expressing CHI3L1 and AQP1. Differentiated TM cells responded to dexamethasone treatment with increased Myocilin expression, which could be used as in vitro glaucoma model for further studies. Conditioned medium from ADSCs was found to impart a regenerative effect on primary TM cells. In conclusion, ADSCs maintained their stemness and multipotency after long-term cryopreservation with variability between different donors. This study can have great repercussions in regenerative medicine and pave the way for future clinical trials using cryopreserved ADSCs.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yi Xu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Enzhi Yang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yiwen Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
24
|
Kumar A, Xu Y, Yang E, Du Y. Stemness and Regenerative Potential of Corneal Stromal Stem Cells and Their Secretome After Long-Term Storage: Implications for Ocular Regeneration. Invest Ophthalmol Vis Sci 2019; 59:3728-3738. [PMID: 30046814 PMCID: PMC6059729 DOI: 10.1167/iovs.18-23824] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose To assess the stemness and regenerative potential of cryopreserved corneal stromal stem cells (cryo-CSSCs) after long-term storage. We also used the secretome from these cells to observe the effect on wound-healing capacity of corneal fibroblasts and on the expression of fibrotic markers during wound healing. Methods CSSCs were obtained from three donors and stored in liquid nitrogen for approximately 10 years. Post thaw, cryo-CSSCs were characterized for stemness using phenotypic and genotypic markers along with colony-forming efficiency and three-dimensional spheroid formation. Multilineage differentiation was observed by differentiation into osteocytes, adipocytes, neural cells, and keratocytes. Secretome was harvested by culturing cryo-CSSCs in log phase. Wound-healing capacity was observed by live-cell time-lapse microscopy. Statistical analysis was done using 1-way ANOVA and Tukey posttest. Results CSSCs displayed good viability post thaw and showed >90% expression of stem cell markers CD90, CD73, CD105, STRO1, and CD166. cryo-CSSCs also expressed stem cell genes OCT4, KLF4, and ABCG2, and could also form colonies and three-dimensional spheroids. Multipotency assessment showed that all three cryo-CSSCs could differentiate into osteocytes, adipocytes, neural cells, as shown by β-III tubulin and neurofilament antibody staining and corneal keratocytes as observed by staining for Kera C, J19, and collagen V antibodies. The secretome derived from these three populations could promote the wound healing of corneal fibroblasts and reduce the expression of fibrotic markers SPARC and fibronectin. Conclusions CSSCs maintained their stemness and multipotency after long-term storage, and secretome derived from these cells can be of paramount importance for corneal regeneration and prevention of fibrosis.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yi Xu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Enzhi Yang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Shanghai Oriental Hospital, Tongji University, Shanghai, China
| |
Collapse
|
25
|
Abstract
Adult stem cells are excellent cell resource for cell therapy and regenerative medicine. Dental pulp stem cells (DPSCs) have been discovered and well known in various application. Here, we reviewed the history of dental pulp stem cell study and the detail experimental method including isolation, culture, cryopreservation, and the differentiation strategy to different cell lineage. Moreover, we discussed the future potential application of the combination of tissue engineering and of DPSC differentiation. This review will help the new learner to quickly get into the DPSC filed.
Collapse
Affiliation(s)
- Xianrui Yang
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 China
| | - Li Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062 Hubei China
| | - Li Xiao
- Department of Stomatology, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Chengdu, 610072 China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062 Hubei China
| |
Collapse
|
26
|
Pilbauerová N, Suchánek J. Cryopreservation of Dental Stem Cells. ACTA MEDICA (HRADEC KRÁLOVÉ) 2018; 61:1-7. [PMID: 30012243 DOI: 10.14712/18059694.2018.16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Nowadays, regenerative and reparative medicine has grown in popularity. Dental stem cells are easily accessible source of adult stem cells. They can be harvested by a tooth extraction or spontaneous deciduous tooth exfoliation. They have to be isolated, expanded and stored until time they would be needed for individual stem cell therapy. Cryopreservation is both a short-term and long-term storage of tissues or cells at sub-zero temperatures. There are several methods of cryopreservation requiring different technologies. The objective of this review is to compare them and highlight their advantages and disadvantages.
Collapse
Affiliation(s)
- Nela Pilbauerová
- Department of Dentistry, Charles University, Faculty of Medicine in Hradec Králové, and University Hospital, Hradec Králové, Czech Republic.
| | - Jakub Suchánek
- Department of Dentistry, Charles University, Faculty of Medicine in Hradec Králové, and University Hospital, Hradec Králové, Czech Republic
| |
Collapse
|
27
|
Kumar A, Kumar V, Rattan V, Jha V, Bhattacharyya S. Secretome proteins regulate comparative osteogenic and adipogenic potential in bone marrow and dental stem cells. Biochimie 2018; 155:129-139. [PMID: 30367923 DOI: 10.1016/j.biochi.2018.10.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Dental stem cells (DMSC) have been studied extensively since their early discovery. However, the data regarding osteogenic potential of DMSC with other cell types is sparse and the secretome proteins underlying these differences have not been explored. In this study, we have compared the osteogenic and adipogenic potential of DMSC with Bone Marrow Stem cells (BMSC) and reported the contribution of secretome proteins in controlling their differentiation. METHODS Osteogenic potential of these stem cells was compared by mineralization assay, alkaline phosphatase (ALP) assay, immunofluorescence of dentine sialo phosphoprotein (DSPP) & qPCR for osteogenic genes. Adipogenic potential was compared by Oil Red O staining and qPCR for PPAR-γ, leptin & adipsin. Proteomic analysis of secretome was performed by employing WATERS nano Lc-MS/MS system. RESULTS We observed a higher osteogenic potential in DMSC, especially dental pulp stem cells (DPSC) as compared to BMSC population but adipogenic potential was found to be better in BMSC as compared to DMSC. Deeper investigations into secretome of these cells by Lc-MS/MS revealed the presence of proteins pertaining to osteogenic and adipogenic lineage. Presence of some important proteins regulating osteogenic (DSPP, BMP7, DDR2, USP9X) and adipogenic differentiation (NCOA2, PEG10, LPA) in secretome of BMSC and DMSC reflected the role of paracrine factors during differentiation. CONCLUSION Our study provides first evidence regarding regulation of osteogenic/adipogenic potential by secretome proteins in DMSC and BMSC. DMSC especially DPSC and its secretome show an inherent tendency for higher osteogenic differentiation and lower adipogenic differentiation, these may be potential candidates for effective future therapy in osteoporosis where disturbance of osteocyte/adipocyte homeostasis is reported.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Biophysics, PGIMER, Chandigarh, India; Department of Ophthalmology, University of Pittsburgh, USA
| | - Vinod Kumar
- Department of Nephrology, PGIMER, Chandigarh, India
| | - Vidya Rattan
- Unit of Oral and Maxillofacial Surgery, Oral Health Science Centre, PGIMER, Chandigarh, India
| | - Vivekananda Jha
- Department of Nephrology, PGIMER, Chandigarh, India; The George Institute for Global Health, India
| | | |
Collapse
|
28
|
Kumar A, Kumar V, Rattan V, Jha V, Pal A, Bhattacharyya S. Molecular spectrum of secretome regulates the relative hepatogenic potential of mesenchymal stem cells from bone marrow and dental tissue. Sci Rep 2017; 7:15015. [PMID: 29118330 PMCID: PMC5678086 DOI: 10.1038/s41598-017-14358-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/10/2017] [Indexed: 01/10/2023] Open
Abstract
Liver regeneration is a spontaneous process that occurs after liver injury, but acute liver failure is a complex and fatal disease which is difficult to treat. Cell-based therapies are promising alternative therapeutic approach for liver failure and different cell sources have been tested in this regard. We investigated the comparative hepatogenic potential of human bone marrow stem cells (BMSC) with stem cells derived from human dental pulp (DPSC), apical papilla (SCAP) and follicle (DFSC) during this study. Hepatogenic potential of stem cells was assessed by functional assays at both genetic and protein level. We observed higher expression of most of the hepatic markers post differentiation in DPSCs compared to other cell types. LC-MS/MS analysis of stem cell secretome revealed the presence of different proteins related to hepatogenic lineage like growth arrest specific protein 6, oncostatin M, hepatocyte growth factor receptor etc. Interactome and Reactome pathway analysis revealed the interaction of DPSC/SCAP secretome proteins and these proteins were found to be associated with various pathways involved in lipid transport and metabolism. To the best of our knowledge, this is the first study regarding detailed investigation of hepatogenic potential of BMSCs v/s DMSCs (DPSC, SCAP & DFSC) along-with secretome characterization.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Biophysics, PGIMER, Chandigarh, India
| | - Vinod Kumar
- Department of Nephrology, PGIMER, Chandigarh, India
| | - Vidya Rattan
- Unit of Oral and Maxillofacial surgery, Oral health science centre, PGIMER, Chandigarh, India
| | - Vivekananda Jha
- Department of Nephrology, PGIMER, Chandigarh, India.,University of Oxford, Oxford, UK
| | - Arnab Pal
- Department of Biochemistry, PGIMER, Chandigarh, India
| | | |
Collapse
|
29
|
Alsulaimani RS, Ajlan SA, Aldahmash AM, Alnabaheen MS, Ashri NY. Isolation of dental pulp stem cells from a single donor and characterization of their ability to differentiate after 2 years of cryopreservation. Saudi Med J 2017; 37:551-60. [PMID: 27146619 PMCID: PMC4880656 DOI: 10.15537/smj.2016.5.13615] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Objectives: To investigate the viability and differentiation capacity of dental pulp stem cells (DPSCs) isolated from single donors after two years of cryopreservation. Methods: This prospective study was conducted between October 2010 and February 2014 in the Stem Unit, College of Medicine, King Saud University, Riyadh, Saudi Arabia. Seventeen teeth extracted from 11 participants were processed separately to assess the minimum tissue weight needed to yield cells for culturing in vitro. Cell stemness was evaluated before passage 4 using the colony forming unit assay, immunofluorescence staining, and bi-lineage differentiation. Dental pulp stem cells were cryopreserved for 2 years. Post-thaw DPSCs were cultured until senescence and differentiated toward osteogenic, odontogenic, adipogenic, and chondrogenic lineages. Results: Viable cells were isolated successfully from 6 of the 11 participants. Three of these 6 cultured cell lines were identified as DPSCs. A minimum of 0.2 g of dental pulp tissue was required for successful isolation of viable cells from a single donor. Post-thaw DPSCs successfully differentiated towards osteogenic, odontogenic, chondrogenic, and adipogenic lineages. The post-thaw DPSCs were viable in vitro up to 70 days before senescence. There was no significant difference between the cells. Conclusion: Within the limitations of this investigation, viable cells from dental pulp tissue were isolated successfully from the same donor using a minimum of 2 extracted teeth. Not all isolated cells from harvested dental pulp tissue had the characteristics of DPSCs. Post-thaw DPSCs maintained their multi-lineage differentiation capacity.
Collapse
Affiliation(s)
- Reem S Alsulaimani
- Department of Restorative Dental Science, College of Dentistry, King Saud University, Riyadh, Kingdom of Saudi Arabia. E-mail.
| | | | | | | | | |
Collapse
|
30
|
Wang HX, Gao XW, Ren B, Cai Y, Li WJ, Yang YL, Li YJ. Comparative analysis of different feeder layers with 3T3 fibroblasts for culturing rabbits limbal stem cells. Int J Ophthalmol 2017; 10:1021-1027. [PMID: 28730101 DOI: 10.18240/ijo.2017.07.01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 03/31/2017] [Indexed: 02/08/2023] Open
Abstract
AIM To explore the possibility of human umbilical cord mesenchymal stem cells (hUCMSCs), human umbilical vein endothelial cells (hUVECs), human dental pulp stem cells (hDPSCs) and human periodontal ligament stem cells (hPDLSCs) serving as feeder cells in co-culture systems for the cultivation of limbal stem cells. METHODS Different feeder layers were cultured in Dulbecco's modified Eagle's medium (DMEM)/F12 and were treated with mitomycin C. Rabbits limbal stem cells (LSCs) were co-cultured on hUCMSCs, hUVECs, hDPSCs, hPDLSCs and NIH-3T3, and then comparative analysis were made between each group to see their respective colony-forming efficiency (CFE) assay and immunofluorescence (IPO13,CK3/12). RESULTS The efficiency of the four type cells in supporting the LSCs morphology and its cellular differentiation was similar to that of NIH-3T3 fibroblasts as demonstrated by the immunostaining properties analysis, with each group exhibiting a similar strong expression pattern of IPO13, but lacking CK3 and CK12 expression in terms of immunostaining. But hUCMSCs, hDPSCs and hPDLSCs feeder layers were superior in promoting colony formation potential of cells when compared to hUVECs and feeder-cell-free culture. CONCLUSION hUCMSCs, hDPSCs and hPDLSCs can be a suitable alternative to conventional mouse NIH-3T3 feeder cells, so that risk of zoonotic infection can be diminished.
Collapse
Affiliation(s)
- Hui-Xian Wang
- Medical College of Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, China.,Ophthalmic Center, No.474 Hospital of Chinese PLA, Urumqi 830013, Xinjiang Uygur Autonomous Region, China
| | - Xiao-Wei Gao
- Ophthalmic Center, No.474 Hospital of Chinese PLA, Urumqi 830013, Xinjiang Uygur Autonomous Region, China
| | - Bing Ren
- Ophthalmic Center, No.474 Hospital of Chinese PLA, Urumqi 830013, Xinjiang Uygur Autonomous Region, China
| | - Yan Cai
- Ophthalmic Center, No.474 Hospital of Chinese PLA, Urumqi 830013, Xinjiang Uygur Autonomous Region, China
| | - Wen-Jing Li
- Ophthalmic Center, No.474 Hospital of Chinese PLA, Urumqi 830013, Xinjiang Uygur Autonomous Region, China
| | - Yu-Li Yang
- Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yi-Jian Li
- Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
31
|
Takebe Y, Tatehara S, Fukushima T, Tokuyama-Toda R, Yasuhara R, Mishima K, Satomura K. Cryopreservation Method for the Effective Collection of Dental Pulp Stem Cells. Tissue Eng Part C Methods 2017; 23:251-261. [DOI: 10.1089/ten.tec.2016.0519] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yusuke Takebe
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Seiko Tatehara
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Tatsuhiro Fukushima
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Reiko Tokuyama-Toda
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Rika Yasuhara
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan
| | - Kazuhito Satomura
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| |
Collapse
|
32
|
Conde MCM, Chisini LA, Grazioli G, Francia A, Carvalho RVD, Alcázar JCB, Tarquinio SBC, Demarco FF. Does Cryopreservation Affect the Biological Properties of Stem Cells from Dental Tissues? A Systematic Review. Braz Dent J 2017; 27:633-640. [PMID: 27982171 DOI: 10.1590/0103-6440201600980] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/12/2016] [Indexed: 01/09/2023] Open
Abstract
This systematic review evaluated if different cryopreservation protocols could affect biological properties (Cell survival rate (CSR), proliferation, differentiation, maintenance of stem cell markers) of stem cells obtained from dental tissues (DSC) post-thaw. An electronic search was carried out within PubMed and ISI Web Science by using specific keyword. Two independent reviewers read the titles and abstracts of all reports respecting predetermined inclusion/exclusion criteria. Data were extracted considering the biological properties of previously cryopreserved DSCs and previously cryopreserved dental tissues. DSCs cryopreserved as soon as possible after their isolation presents a CSR quite similar to the non-cryopreserved DSC. Dimethyl sulfoxide (DMSO) [10%] showed good results related to cell recovery post-thaw to cryopreserve cells and tissues for periods of up to 2 years. The cryopreservation of DSC in a mechanical freezer (-80°C) allows the recovery of stem cells post-thaw. The facilities producing magnetic field (MF), demand a lower concentration of cryoprotectant, but their use is not dispensable. It is possible to isolate and cryopreserve dental pulp stem cell (DPSC) from healthy and diseased vital teeth. Cryopreservation of dental tissues for late DSC isolation, combined with MF dispensability, could be valuable to reduce costs and improve the logistics to develop teeth banks.
Collapse
Affiliation(s)
| | - Luiz Alexandre Chisini
- Post-Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Guillermo Grazioli
- Post-Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Alejandro Francia
- School of Dentistry, University of the Republic, Montevideo, Uruguay
| | | | - Jose Carlos Bernedo Alcázar
- Post-Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Brazil.,Post-Graduate Program in Science and Material Engineering, Federal University of Pelotas, Pelotas, Brazil
| | - Sandra Beatriz Chavez Tarquinio
- Post-Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Brazil.,Department of Semiology and Clinics, Federal University of Pelotas, Pelotas, Brazil
| | - Flávio Fernando Demarco
- Post-Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Brazil.,Post-Graduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
33
|
Kumar A, Kumar V, Rattan V, Jha V, Bhattacharyya S. Secretome Cues Modulate the Neurogenic Potential of Bone Marrow and Dental Stem Cells. Mol Neurobiol 2016; 54:4672-4682. [PMID: 27422132 DOI: 10.1007/s12035-016-0011-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022]
Abstract
Dental tissue is emerging as a promising source of stem cells especially in nerve regeneration mainly due to their neural origin and ease of harvest. We isolated dental stem cells from three sources, namely, dental pulp (DPSCs), dental follicle (DFSCs), and apical papilla (SCAP), and explored the efficacy of each towards neural differentiation in comparison to bone marrow-derived stem cells. The neural differentiation potential was assessed by expression of various neural markers and neurosphere assay. We observed that DPSCs were inherently predisposed towards neural lineage. To further delineate the paracrine cues responsible for the differences in neural differentiation potential, we harvested the conditioned secretome from each of the stem cell population and observed their effect on colony formation, neurite extension, and neural gene expression of IMR-32, a pre-neuroblastic cell line. We found that neural differentiation was significantly enhanced when IMR-32 cells were treated with secretome derived from DMSCs as compared to the same from BMSCs. Th1/Th2/Th17 cytokine array revealed DPSC secretome had higher expression of the cytokines like GCSF, IFNγ, and TGFβ that promote neural differentiation. Thus, we concluded that DPSCs may be the preferred source of cells for obtaining neural lineage among the four sources of stem cells. Our results also indicate that the DPSC-secreted factors may be responsible for their propensity towards neural differentiation. This study suggests that DPSCs and their secretomes can be a potentially lucrative source for cell-based and "cell-free" (secretome) therapy for neural disorders and injury.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Biophysics, PGIMER, Chandigarh, 160012, India
| | - Vinod Kumar
- Department of Nephrology, PGIMER, Chandigarh, India
| | - Vidya Rattan
- Unit of Oral and Maxillofacial surgery, Oral health science centre, PGIMER, Chandigarh, India
| | | | | |
Collapse
|
34
|
Multipotent Differentiation of Human Dental Pulp Stem Cells: a Literature Review. Stem Cell Rev Rep 2016; 12:511-523. [DOI: 10.1007/s12015-016-9661-9] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Bianco J, De Berdt P, Deumens R, des Rieux A. Taking a bite out of spinal cord injury: do dental stem cells have the teeth for it? Cell Mol Life Sci 2016; 73:1413-37. [PMID: 26768693 PMCID: PMC11108394 DOI: 10.1007/s00018-015-2126-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 12/15/2022]
Abstract
Dental stem cells are an emerging star on a stage that is already quite populated. Recently, there has been a lot of hype concerning these cells in dental therapies, especially in regenerative endodontics. It is fitting that most research is concentrated on dental regeneration, although other uses for these cells need to be explored in more detail. Being a true mesenchymal stem cell, their capacities could also prove beneficial in areas outside their natural environment. One such field is the central nervous system, and in particular, repairing the injured spinal cord. One of the most formidable challenges in regenerative medicine is to restore function to the injured spinal cord, and as yet, a cure for paralysis remains to be discovered. A variety of approaches have already been tested, with graft-based strategies utilising cells harbouring appropriate properties for neural regeneration showing encouraging results. Here we present a review focusing on properties of dental stem cells that endorse their use in regenerative medicine, with particular emphasis on repairing the damaged spinal cord.
Collapse
Affiliation(s)
- John Bianco
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium.
- Integrated Center for Cell Therapy and Regenerative Medicine, International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic.
| | - Pauline De Berdt
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium
| | - Ronald Deumens
- Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Anne des Rieux
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
| |
Collapse
|
36
|
Cryopreservation and Banking of Dental Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 951:199-235. [DOI: 10.1007/978-3-319-45457-3_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|