1
|
Crisol M, Wu K, Congdon B, Skene-Arnold TD, Laouar L, Elliott JA, Jomha NM. Chondrocyte Viability of Particulated Porcine Articular Cartilage Is Maintained in Tissue Storage After Cryoprotectant Exposure, Vitrification, and Tissue Warming. Cartilage 2024; 15:139-146. [PMID: 37148124 PMCID: PMC11368895 DOI: 10.1177/19476035221118656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/10/2022] [Accepted: 07/22/2022] [Indexed: 05/07/2023] Open
Abstract
OBJECTIVE Vitrification of articular cartilage (AC) is a promising technique which may enable long-term tissue banking of AC allografts. We previously developed a 2-step, dual-temperature, multi-cryoprotectant agent (CPA) loading protocol to cryopreserve particulated AC (1 mm3 cubes). Furthermore, we also determined that the inclusion of ascorbic acid (AA) effectively mitigates CPA toxicity in cryopreserved AC. Prior to clinical translation, chondrocytes must remain viable after tissue re-warming and before transplantation. However, the effects of short-term hypothermic storage of particulated AC after vitrification and re-warming are not documented. This study evaluated the chondrocyte viability of post-vitrified particulated AC during a 7-day tissue storage period at 4 °C. We hypothesized that porcine particulated AC could be stored for up to 7 days after successful vitrification without significant loss of cell viability, and these results would be enhanced when cartilage is incubated in storage medium supplemented with clinical grade AA. DESIGN Three experimental groups were examined at 5 time points: a fresh control (only incubated in medium), a vitrified - AA group, and a vitrified + AA group (N = 7). RESULTS There was a mild decline in cell viability but both treatment groups maintained a viability of greater than 80% viable cells which is acceptable for clinical translation. CONCLUSION We determined that particulated AC can be stored for up to 7 days after successful vitrification without a clinically significant decline in chondrocyte viability. This information can be used to guide tissue banks regarding the implementation of AC vitrification to increase cartilage allograft availability.
Collapse
Affiliation(s)
- Mary Crisol
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Kezhou Wu
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Sports Medicine Centre, Department of Orthopedic Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Barry Congdon
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | | | - Leila Laouar
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Janet A.W. Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Nadr M. Jomha
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Wang X, Ren Z, Liu Y, Ma Y, Huang L, Song W, Lin Q, Zhang Z, Li P, Wei X, Duan W. Characteristics and Clinical Outcomes After Osteochondral Allograft Transplantation for Treating Articular Cartilage Defects: Systematic Review and Single-Arm Meta-analysis of Studies From 2001 to 2020. Orthop J Sports Med 2023; 11:23259671231199418. [PMID: 37745815 PMCID: PMC10515554 DOI: 10.1177/23259671231199418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/03/2023] [Indexed: 09/26/2023] Open
Abstract
Background Osteochondral allograft transplantation (OCA) treats symptomatic focal cartilage defects with satisfactory clinical results. Purpose To comprehensively analyze the characteristics and clinical outcomes of OCA for treating articular cartilage defects. Study Design Systematic review; Level of evidence, 4. Methods We searched Embase, PubMed, Cochrane Database, and Web of Science for studies published between January 1, 2001, and December 31, 2020, on OCA for treating articular cartilage defects. Publication information, patient data, osteochondral allograft storage details, and clinical outcomes were extracted to conduct a comprehensive summative analysis. Results In total, 105 studies involving 5952 patients were included. The annual reported number of patients treated with OCA increased from 69 in 2001 to 1065 in 2020, peaking at 1504 cases in 2018. Most studies (90.1%) were performed in the United States. The mean age at surgery was 34.2 years, and 60.8% of patients were male and had a mean body mass index of 26.7 kg/m2. The mean lesion area was 5.05 cm2, the mean follow-up duration was 54.39 months, the mean graft size was 6.85 cm2, and the number of grafts per patient was 54.7. The failure rate after OCA was 18.8%, and 83.1% of patients reported satisfactory results. Allograft survival rates at 2, 5, 10, 15, 20, and 25 years were 94%, 87.9%, 80%, 73%, 55%, and 59.4%, respectively. OCA was mainly performed on the knee (88.9%). The most common diagnosis in the knee was osteochondritis dissecans (37.9%), and the most common defect location was the medial femoral condyle (52%). The most common concomitant procedures were high tibial osteotomy (28.4%) and meniscal allograft transplantation (24.7%). After OCA failure, 54.7% of patients underwent revision with primary total knee arthroplasty. Conclusion The annual reported number of patients who underwent OCA showed a significant upward trend, especially from 2016 to 2020. Patients receiving OCA were predominantly young male adults with a high body mass index. OCA was more established for knee cartilage than an injury at other sites, and its best indication was osteochondritis dissecans. This analysis demonstrated satisfactory long-term postoperative outcomes.
Collapse
Affiliation(s)
- Xueding Wang
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Zhiyuan Ren
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Yang Liu
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Yongsheng Ma
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Lingan Huang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Wenjie Song
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Qitai Lin
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Zhipeng Zhang
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Pengcui Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Xiaochun Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Wangping Duan
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| |
Collapse
|
3
|
Ead M, Wu K, Jar C, Duke K, Jomha N, Westover L. Mechanical Properties of Fresh, Frozen and Vitrified Articular Cartilage. Ann Biomed Eng 2023; 51:2001-2012. [PMID: 37129781 DOI: 10.1007/s10439-023-03220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Osteochondral allograft transplantations are typically used to treat focal articular cartilage injuries where the damaged cartilage is replaced with fresh cadaveric donor grafts. Despite the notable success rate of this procedure, it is limited by fresh donor tissue availability which can only be stored for approximately 28 days after harvest. Vitrification, a form of cryopreservation, can extend the storage time of cartilage. Although it has shown to preserve chondrocyte viability, its effect on the mechanical properties of the tissue has not been thoroughly investigated. Therefore, in this study, the mechanical properties of fresh, frozen, and vitrified articular cartilage were evaluated through unconfined compression testing. Results showed that the peak modulus, equilibrium modulus, and relaxation time constants of the vitrified and control samples (tested one day after harvest) were similar and higher than the fresh (tested 21 days after harvest) and frozen samples. This demonstrated that vitrification does not adversely affect the mechanical properties of cartilage and can be used as an alternative to fresh allografts which are limited by storage time. The fresh samples also had inferior mechanical properties compared to the control samples suggesting that vitrified allografts could potentially improve clinical outcomes in addition to increasing donor tissue availability.
Collapse
Affiliation(s)
- Maha Ead
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada.
| | - Kezhou Wu
- Department of Surgery, University of Alberta, Edmonton, Canada
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chester Jar
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Kajsa Duke
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Nadr Jomha
- Department of Surgery, University of Alberta, Edmonton, Canada
| | - Lindsey Westover
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|