1
|
Lee CS, Guo S, Rho H, Levi J, Garcia-Segura S, Wong MS, Gardea-Torresdey J, Westerhoff P. Unified Metallic Catalyst Aging Strategy and Implications for Water Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10.1021/acs.est.1c02364. [PMID: 34309365 PMCID: PMC9720895 DOI: 10.1021/acs.est.1c02364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Heterogeneous catalysis holds great promise for oxidizing or reducing a range of pollutants in water. A well-recognized, but understudied, barrier to implement catalytic treatment centers around fouling or aging over time of the catalyst surfaces. To better understand how to study catalyst fouling or aging, we selected a representative bimetallic catalyst (Pd-In supported on Al2O3), which holds promise to reduce nitrate to innocuous nitrogen gas byproducts upon hydrogen addition, and six model solutions (deionized water, sodium hypochlorite, sodium borohydride, acetic acid, sodium sulfide, and tap water). Our novel aging experimental apparatus permitted single passage of each model solution, separately, through a small packed-bed reactor containing replicate bimetallic catalyst "beds" that could be sacrificed weekly for off-line characterization to quantify impacts of fouling or aging. The composition of the model solutions led to the following gradual changes in surface composition, morphology, or catalytic reactivity: (i) formation of passivating species, (ii) decreased catalytic sites due to metal leaching under acid conditions or sulfide poisoning, (iii) dissolution and/or transformation of indium, (iv) formation of new catalytic sites by the introduction of an additional metallic element, and (v) oxidative etching. The model solution water chemistry captured a wide range of conditions likely to be encountered in potable or industrial water treatment. Aging-induced changes altered catalytic activity and provided insights into potential strategies to improve long-term catalyst operations for water treatment.
Collapse
Affiliation(s)
- Chung-Seop Lee
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Sujin Guo
- Department of Civil and Environmental Engineering, Rice University, 6100 S. Main Street, Houston, TX 77005, USA
| | - Hojung Rho
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Juliana Levi
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Sergi Garcia-Segura
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Michael S. Wong
- Department of Civil and Environmental Engineering, Rice University, 6100 S. Main Street, Houston, TX 77005, USA
| | - Jorge Gardea-Torresdey
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| |
Collapse
|
2
|
Marks R, Seaman J, Kim J, Doudrick K. Activity and stability of the catalytic hydrogel membrane reactor for treating oxidized contaminants. WATER RESEARCH 2020; 174:115593. [PMID: 32086133 DOI: 10.1016/j.watres.2020.115593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
The catalytic hydrogel membrane reactor (CHMR) is an interfacial membrane process that uses nano-sized catalysts for the hydrogenation of oxidized contaminants in drinking water. In this study, the CHMR was operated as a continuous-flow reactor using nitrite (NO2-) as a model contaminant and palladium (Pd) as a model catalyst. Using the overall bulk reaction rate for NO2- reduction as a metric for catalytic activity, we evaluated the effect of the hydrogen gas (H2) delivery method to the CHMR, the initial H2 and NO2- concentrations, Pd density in the hydrogel, and the presence of Pd-deactivating species. The chemical stability of the catalytic hydrogel was evaluated in the presence of aqueous cations (H+, Na+, Ca2+) and a mixture of ions in a hard groundwater. Delivering H2 to the CHMR lumens using a vented operation mode, where the reactor is sealed and the lumens are periodically flushed to the atmosphere, allowed for a combination of a high H2 consumption efficiency and catalytic activity. The overall reaction rate of NO2- was dependent on relative concentrations of H2 and NO2- at catalytic sites, which was governed by both the chemical reaction and mass transport rates. The intrinsic catalytic reaction rate was combined with a counter-diffusional mass transport component in a 1-D computational model to describe the CHMR. Common Pd-deactivating species [sulfite, bisulfide, natural organic matter] hindered the reaction rate, but the hydrogel afforded some protection from deactivation compared to a batch suspension. No chemical degradation of the hydrogel structure was observed for a model water (pH > 4, Na+, Ca2+) and a hard groundwater after 21 days of exposure, attesting to its stability under natural water conditions.
Collapse
Affiliation(s)
- Randal Marks
- University of Notre Dame, Department of Civil and Environmental Engineering and Earth Sciences, USA
| | - Joseph Seaman
- University of Notre Dame, Department of Chemical and Biomolecular Engineering, USA
| | - Junyeol Kim
- University of Notre Dame, Department of Civil and Environmental Engineering and Earth Sciences, USA
| | - Kyle Doudrick
- University of Notre Dame, Department of Civil and Environmental Engineering and Earth Sciences, USA.
| |
Collapse
|
3
|
Chaplin BP, Reinhard M, Schneider WF, Schüth C, Shapley JR, Strathmann TJ, Werth CJ. Critical review of Pd-based catalytic treatment of priority contaminants in water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:3655-3670. [PMID: 22369144 DOI: 10.1021/es204087q] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Catalytic reduction of water contaminants using palladium (Pd)-based catalysts and hydrogen gas as a reductant has been extensively studied at the bench-scale, but due to technical challenges it has only been limitedly applied at the field-scale. To motivate research that can overcome these technical challenges, this review critically analyzes the published research in the area of Pd-based catalytic reduction of priority drinking water contaminants (i.e., halogenated organics, oxyanions, and nitrosamines), and identifies key research areas that should be addressed. Specifically, the review summarizes the state of knowledge related to (1) proposed reaction pathways for important classes of contaminants, (2) rates of contaminant reduction with different catalyst formulations, (3) long-term sustainability of catalyst activity with respect to natural water foulants and regeneration strategies, and (4) technology applications. Critical barriers hindering implementation of the technology are related to catalyst activity (for some contaminants), stability, fouling, and regeneration. New developments overcoming these limitations will be needed for more extensive field-scale application of this technology.
Collapse
Affiliation(s)
- Brian P Chaplin
- Department of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| | | | | | | | | | | | | |
Collapse
|