Gigot A, Fontana M, Pirri CF, Rivolo P. Graphene/Ruthenium Active Species Aerogel as Electrode for Supercapacitor Applications.
MATERIALS (BASEL, SWITZERLAND) 2017;
11:E57. [PMID:
29301192 PMCID:
PMC5793555 DOI:
10.3390/ma11010057]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/17/2017] [Accepted: 12/26/2017] [Indexed: 11/25/2022]
Abstract
Ruthenium active species containing Ruthenium Sulphide (RuS₂) is synthesized together with a self-assembled reduced graphene oxide (RGO) aerogel by a one-pot hydrothermal synthesis. Ruthenium Chloride and L-Cysteine are used as reactants. The hydrothermal synthesis of the innovative hybrid material occurs at 180 °C for 12 h, by using water as solvent. The structure and morphology of the hybrid material are fully characterized by Raman, XRD, XPS, FESEM and TEM. The XRD and diffraction pattern obtained by TEM display an amorphous nanostructure of RuS₂ on RGO crystallized flakes. The specific capacitance measured in planar configuration in 1 M NaCl electrolyte at 5 mV s-1 is 238 F g-1. This supercapacitor electrode also exhibits perfect cyclic stability without loss of the specific capacitance after 15,000 cycles. In summary, the RGO/Ruthenium active species hybrid material demonstrates remarkable properties for use as active material for supercapacitor applications.
Collapse