1
|
Filie A, Shirman T, Aizenberg M, Aizenberg J, Friend CM, Madix RJ. The dynamic behavior of dilute metallic alloy PdxAu1−x/SiO2 raspberry colloid templated catalysts under CO oxidation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00469g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dilute palladium-in-gold alloys have potential as efficient oxidation catalysts; controlling the Pd surface distribution is critical.
Collapse
Affiliation(s)
- Amanda Filie
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| | - Tanya Shirman
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| | - Michael Aizenberg
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| | - Joanna Aizenberg
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
- Department of Chemistry and Chemical Biology
| | - Cynthia M. Friend
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
- Department of Chemistry and Chemical Biology
| | - Robert J. Madix
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| |
Collapse
|
2
|
Khawaji M, Chadwick D. Selective oxidation using Au-Pd catalysts: Role of the support in the stabilization of colloidal Au-Pd NPs. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.08.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Luneau M, Guan E, Chen W, Foucher AC, Marcella N, Shirman T, Verbart DMA, Aizenberg J, Aizenberg M, Stach EA, Madix RJ, Frenkel AI, Friend CM. Enhancing catalytic performance of dilute metal alloy nanomaterials. Commun Chem 2020; 3:46. [PMID: 36703362 PMCID: PMC9814734 DOI: 10.1038/s42004-020-0293-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/17/2020] [Indexed: 01/29/2023] Open
Abstract
Dilute alloys are promising materials for sustainable chemical production; however, their composition and structure affect their performance. Herein, a comprehensive study of the effects of pretreatment conditions on the materials properties of Pd0.04Au0.96 nanoparticles partially embedded in porous silica is related to the activity for catalytic hydrogenation of 1-hexyne to 1-hexene. A combination of in situ characterization and theoretical calculations provide evidence that changes in palladium surface content are induced by treatment in oxygen, hydrogen and carbon monoxide at various temperatures. In turn, there are changes in hydrogenation activity because surface palladium is necessary for H2 dissociation. These Pd0.04Au0.96 nanoparticles in the porous silica remain structurally intact under many cycles of activation and deactivation and are remarkably resistant to sintering, demonstrating that dilute alloy catalysts are highly dynamic systems that can be tuned and maintained in a active state.
Collapse
Affiliation(s)
- Mathilde Luneau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Erjia Guan
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Wei Chen
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nicholas Marcella
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Tanya Shirman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - David M A Verbart
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Michael Aizenberg
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert J Madix
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, 11794, USA
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Cynthia M Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
4
|
Efficient Gold–Palladium Nanoparticles Stabilized by Poly(amic acid) Salt: Synthesis and Application in Catalytic Oxidation of Amines to Imines. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-019-01317-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Kimi M, Syafiqah Safiuddin BN, Cem Pang S. Catalytic Performance of Copper-Manganese Supported on Activated Carbon Synthesized by Deposition-Precipitation Method. CHEMISTRY & CHEMICAL TECHNOLOGY 2020. [DOI: 10.23939/chcht14.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Luneau M, Shirman T, Foucher AC, Duanmu K, Verbart DM, Sautet P, Stach EA, Aizenberg J, Madix RJ, Friend CM. Achieving High Selectivity for Alkyne Hydrogenation at High Conversions with Compositionally Optimized PdAu Nanoparticle Catalysts in Raspberry Colloid-Templated SiO2. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04243] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Alexandre C. Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - David M.A. Verbart
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | | | - Eric A. Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|
7
|
Fernández-García S, Collins SE, Tinoco M, Hungría AB, Calvino JJ, Cauqui MA, Chen X. Influence of {111} nanofaceting on the dynamics of CO adsorption and oxidation over Au supported on CeO2 nanocubes: An operando DRIFT insight. Catal Today 2019. [DOI: 10.1016/j.cattod.2019.01.078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Size, nanostructure, and composition dependence of bimetallic Au–Pd supported on ceria–zirconia mixed oxide catalysts for selective oxidation of benzyl alcohol. J Catal 2019. [DOI: 10.1016/j.jcat.2019.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Gold Stabilized with Iridium on Ceria–Niobia Catalyst: Activity and Stability for CO Oxidation. Top Catal 2019. [DOI: 10.1007/s11244-019-01185-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Amit Singhania, Shipra Mital Gupta. Highly Active CeO2 Nanocatalysts for Low-Temperature CO Oxidation. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418100321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Role of oxygen storage/supply capacity of mixed oxides of Ce and Zr in ethanol oxidation. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Selective Oxidation of Veratryl Alcohol over Au-Pd/Ce 0.62Zr 0.38O₂ Catalysts Synthesized by Sol-Immobilization: Effect of Au:Pd Molar Ratio. NANOMATERIALS 2018; 8:nano8090669. [PMID: 30154374 PMCID: PMC6164080 DOI: 10.3390/nano8090669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/10/2018] [Accepted: 08/24/2018] [Indexed: 11/17/2022]
Abstract
The selective oxidation of veratryl alcohol (VA), a model compound of lignin, with oxygen molecules to produce veratraldehyde (VAld) was studied over monometallic Au, Pd, and bimetallic Au:Pd nanoparticles supported on a Ce0.62Zr0.38O2 mixed oxide for the first time. These bimetallic Au-Pd catalysts with Au:Pd molar ratios from 0.4 to 4.3 were synthesized by the sol-immobilization method. Furthermore, all the catalysts were characterized by inductively coupled plasma-atomic emission spectroscopy (ICP-AES), N2 physisorption, X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy-high angle annular dark field (STEM-HAADF) imaging, energy dispersive X-ray spectroscopy (EDXS), and temperature programmed reduction (TPR) techniques. A synergistic effect between gold and palladium was observed over all the bimetallic catalysts in a wide range of studied Au:Pd ratios. Remarkably, the optimum Au:Pd ratio for this reaction was 1.4 with a turnover frequency of almost six times larger than for the monometallic gold and palladium catalysts. Selectivity to veratraldehyde was higher than 99% for the monometallic Au, Pd, and all the bimetallic Au-Pd catalysts, and stayed constant during the reaction time.
Collapse
|
13
|
Kareem H, Shan S, Lin F, Li J, Wu Z, Prasai B, O'Brien CP, Lee IC, Tran DT, Yang L, Mott D, Luo J, Petkov V, Zhong CJ. Evolution of surface catalytic sites on thermochemically-tuned gold-palladium nanoalloys. NANOSCALE 2018; 10:3849-3862. [PMID: 29417115 DOI: 10.1039/c7nr08748a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoscale alloying constitutes an increasingly-important pathway for design of catalysts for a wide range of technologically important reactions. A key challenge is the ability to control the surface catalytic sites in terms of the alloying composition, thermochemical treatment and phase in correlation with the catalytic properties. Herein we show novel findings of the nanoscale evolution of surface catalytic sites on thermochemically-tuned gold-palladium nanoalloys by probing CO adsorption and oxidation using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) technique. In addition to the bimetallic composition and the support, the surface sites are shown to depend strongly on the thermochemical treatment condition, demonstrating that the ratio of three-fold vs. bridge or atop Pd sites is greatly reduced by thermochemical treatment under hydrogen in comparison with that under oxygen. This type of surface reconstruction is further supported by synchrotron high-energy X-ray diffraction coupled to atomic pair distribution function (HE-XRD/PDF) analysis of the nanoalloy structure, revealing an enhanced degree of random alloying for the catalysts thermochemically treated under hydrogen. The nanoscale alloying and surface site evolution characteristics were found to correlate strongly with the catalytic activity of CO oxidation. These findings have significant implications for the nanoalloy-based design of catalytic synergy.
Collapse
Affiliation(s)
- Haval Kareem
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Low-Temperature CO Oxidation: Effect of the Second Metal on Activated Carbon Supported Pd Catalysts. Catal Letters 2018. [DOI: 10.1007/s10562-018-2298-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Khawaji M, Chadwick D. Au–Pd NPs immobilised on nanostructured ceria and titania: impact of support morphology on the catalytic activity for selective oxidation. Catal Sci Technol 2018. [DOI: 10.1039/c7cy02329d] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Au–Pd colloidal NPs immobilised on ceria nanorods are highly active catalysts for selective oxidation.
Collapse
Affiliation(s)
- Motaz Khawaji
- Department of Chemical Engineering
- Imperial College London
- London SW7 2AZ
- UK
| | - David Chadwick
- Department of Chemical Engineering
- Imperial College London
- London SW7 2AZ
- UK
| |
Collapse
|
16
|
Effect of the Chemical Composition of Mesoporous Cerium-Zirconium Oxides on the Modification with Sulfur and Gold Species and Their Application in Glycerol Oxidation. CHEMENGINEERING 2017. [DOI: 10.3390/chemengineering1020018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Khawaji M, Chadwick D. Au-Pd Bimetallic Nanoparticles Immobilised on Titanate Nanotubes: A Highly Active Catalyst for Selective Oxidation. ChemCatChem 2017. [DOI: 10.1002/cctc.201700851] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Motaz Khawaji
- Department of Chemical Engineering; Imperial College London; South Kensington London SW7 2AZ UK
| | - David Chadwick
- Department of Chemical Engineering; Imperial College London; South Kensington London SW7 2AZ UK
| |
Collapse
|
18
|
Singhania A, Gupta SM. Low-temperature CO oxidation over Cu/Pt co-doped ZrO 2 nanoparticles synthesized by solution combustion. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1546-1552. [PMID: 28884060 PMCID: PMC5550805 DOI: 10.3762/bjnano.8.156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Zirconia (ZrO2) nanoparticles co-doped with Cu and Pt were applied as catalysts for carbon monoxide (CO) oxidation. These materials were prepared through solution combustion in order to obtain highly active and stable catalytic nanomaterials. This method allows Pt2+ and Cu2+ ions to dissolve into the ZrO2 lattice and thus creates oxygen vacancies due to lattice distortion and charge imbalance. High-resolution transmission electron microscopy (HRTEM) results showed Cu/Pt co-doped ZrO2 nanoparticles with a size of ca. 10 nm. X-ray diffraction (XRD) and Raman spectra confirmed cubic structure and larger oxygen vacancies. The nanoparticles showed excellent activity for CO oxidation. The temperature T50 (the temperature at which 50% of CO are converted) was lowered by 175 °C in comparison to bare ZrO2. Further, they exhibited very high stability for CO reaction (time-on-stream ≈ 70 h). This is due to combined effect of smaller particle size, large oxygen vacancies, high specific surface area and better thermal stability of the Cu/Pt co-doped ZrO2 nanoparticles. The apparent activation energy for CO oxidation is found to be 45.6 kJ·mol-1. The CO conversion decreases with increase in gas hourly space velocity (GHSV) and initial CO concentration.
Collapse
Affiliation(s)
- Amit Singhania
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shipra Mital Gupta
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi 110078, India
| |
Collapse
|
19
|
Carter JH, Althahban S, Nowicka E, Freakley SJ, Morgan DJ, Shah PM, Golunski S, Kiely CJ, Hutchings GJ. Synergy and Anti-Synergy between Palladium and Gold in Nanoparticles Dispersed on a Reducible Support. ACS Catal 2016; 6:6623-6633. [PMID: 27990317 PMCID: PMC5154324 DOI: 10.1021/acscatal.6b01275] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/03/2016] [Indexed: 11/28/2022]
Abstract
Highly active and stable bimetallic Au-Pd catalysts have been extensively studied for several liquid-phase oxidation reactions in recent years, but there are far fewer reports on the use of these catalysts for low-temperature gas-phase reactions. Here we initially established the presence of a synergistic effect in a range of bimetallic Au-Pd/CeZrO4 catalysts, by measuring their activity for selective oxidation of benzyl alcohol. The catalysts were then evaluated for low-temperature WGS, CO oxidation, and formic acid decomposition, all of which are believed to be mechanistically related. A strong anti-synergy between Au and Pd was observed for these reactions, whereby the introduction of Pd to a monometallic Au catalyst resulted in a significant decrease in catalytic activity. Furthermore, monometallic Pd was more active than Pd-rich bimetallic catalysts. The nature of the anti-synergy was probed by several ex situ techniques, which all indicated a growth in metal nanoparticle size with Pd addition. However, the most definitive information was provided by in situ CO-DRIFTS, in which CO adsorption associated with interfacial sites was found to vary with the molar ratio of the metals and could be correlated with the catalytic activity of each reaction. As a similar correlation was observed between activity and the presence of Au0* (as detected by XPS), it is proposed that peripheral Au0* species form part of the active centers in the most active catalysts for the three gas-phase reactions. In contrast, the active sites for the selective oxidation of benzyl alcohol are generally thought to be electronically modified gold atoms at the surface of the nanoparticles.
Collapse
Affiliation(s)
- James H. Carter
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Sultan Althahban
- Department of Materials Science and Engineering, Lehigh University, 5
East Packer Avenue, Bethlehem, Pennsylvania 18015-3195, United States
| | - Ewa Nowicka
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Simon J. Freakley
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - David J. Morgan
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Parag M. Shah
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Stanislaw Golunski
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Christopher J. Kiely
- Department of Materials Science and Engineering, Lehigh University, 5
East Packer Avenue, Bethlehem, Pennsylvania 18015-3195, United States
| | - Graham J. Hutchings
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| |
Collapse
|
20
|
Chemical Preparation of Supported Bimetallic Catalysts. Gold-Based Bimetallic, a Case Study. Catalysts 2016. [DOI: 10.3390/catal6080110] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|