1
|
Affiliation(s)
- Susanne Striegler
- Department of Chemistry and Biochemistry, University of Arkansas, 345 North Campus Drive, Fayetteville, Arkansas 72701, United States
| | - Babloo Sharma
- Department of Chemistry and Biochemistry, University of Arkansas, 345 North Campus Drive, Fayetteville, Arkansas 72701, United States
| | - Ifedi Orizu
- Department of Chemistry and Biochemistry, University of Arkansas, 345 North Campus Drive, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
2
|
Zhang N, Meng X, Wu Y, Song H, Huang H, Wang F, Lv J. Highly Selective Isomerization of Glucose into Fructose Catalyzed by a Mimic Glucose Isomerase. ChemCatChem 2019. [DOI: 10.1002/cctc.201900143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ni Zhang
- Key Laboratory of Green Chemistry and Technology College of ChemistrySichuan University Chengdu 610064 P.R. China
| | - Xiang‐Guang Meng
- Key Laboratory of Green Chemistry and Technology College of ChemistrySichuan University Chengdu 610064 P.R. China
| | - Yan‐Yan Wu
- Key Laboratory of Green Chemistry and Technology College of ChemistrySichuan University Chengdu 610064 P.R. China
| | - Hong‐Jin Song
- Key Laboratory of Green Chemistry and Technology College of ChemistrySichuan University Chengdu 610064 P.R. China
| | - Hong Huang
- Key Laboratory of Green Chemistry and Technology College of ChemistrySichuan University Chengdu 610064 P.R. China
| | - Fei Wang
- Key Laboratory of Green Chemistry and Technology College of ChemistrySichuan University Chengdu 610064 P.R. China
| | - Jing Lv
- Key Laboratory of Green Chemistry and Technology College of ChemistrySichuan University Chengdu 610064 P.R. China
| |
Collapse
|
3
|
Yang RQ, Zhang N, Meng XG, Liao XH, Li L, Song HJ. Efficient Hydrolytic Breakage of β-1,4-Glycosidic Bond Catalyzed by a Difunctional Magnetic Nanocatalyst. Aust J Chem 2018. [DOI: 10.1071/ch18138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A novel difunctional magnetic nanocatalyst (DMNC) was prepared and used to catalyse the hydrolytic breakage of β-1,4-glycosidic bonds. The functional nanoparticle displayed excellent catalytic activity for hydrolysis of cellobiose to glucose under moderate conditions. The conversion of cellobiose and yield of glucose could reach 95.3 and 91.1 %, respectively, for a reaction time of 6 h at pH 4.0 and 130°C. DMNC was also an efficient catalyst for the hydrolysis of cellulose: 53.9 % microcrystalline cellulose was hydrolyzed, and 45.7 % reducing sugar was obtained at pH 4.0 and 130°C after 10 h. The magnetic catalyst could be recycled and reused five times without significant loss of catalytic activity.
Collapse
|