1
|
Bhat SI, Bhat C. Metal-organic framework catalysed multicomponent reactions towards the synthesis of Pyrans. Heliyon 2025; 11:e41439. [PMID: 39816504 PMCID: PMC11732708 DOI: 10.1016/j.heliyon.2024.e41439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 01/18/2025] Open
Abstract
Metal-Organic Frameworks (MOFs) gaining increasing interest in heterogeneous catalysis owing to their advantageous properties such as superior porosity, high surface area, ample catalytic sites. Their properties can be tailored by varying the metal ions or metal clusters (nodes) and organic linkers. Magnetically active nano core-shell MOF composites are also discovered for easy separation and reuse of catalyst. MOF catalysed multicomponent reactions (MCRs) satisfy several green chemistry principles and thus can be considered as a sturdy step towards sustainable chemical synthesis. In this article, synthesis of biologically potent pyran scaffolds through MOF catalysed MCR approaches have been reviewed. Preparation of MOF catalyst, its catalytic performance in pyran synthesis, reusability has been discussed with reaction for each example.
Collapse
Affiliation(s)
- Subrahmanya Ishwar Bhat
- Department of Chemistry, NMAM Institute of Technology, Affiliated to NITTE (Deemed to be University), Nitte, 574110, Karnataka, India
| | - Chinmay Bhat
- Department of Chemistry, Government First Grade College Chamarajanagar (Affiliated to Chamarajanagar University), Chamarajanagar, Karnataka, India
| |
Collapse
|
2
|
Yu YH, He JL, Wang HL, Weng GJ, Wu JQ, Lu JM, Shao LX. 2D Cerium-Organic Frameworks as an Efficient Heterogeneous Catalyst for the Synthesis of 1,4-Dihydropyridines via Hantzsch Reaction. Chem Asian J 2024:e202400977. [PMID: 39575600 DOI: 10.1002/asia.202400977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/07/2024] [Indexed: 11/30/2024]
Abstract
Herein, a new two-dimensional (2D) Ce-organic frameworks (referred to as SLX-4) was achieved by traditional solvothermal conditions. Initial studies of SLX-4 toward Hantzsch reaction showed that good catalytic activity can be obtained under mild conditions, giving the desired 1,4-dihydropyridines in moderate to high yields. The catalyst could be reused at least 4 times keeping good catalytic activity. Moreover, compared to the previously reported MOFs catalysts for Hantzsch reactions, SLX-4 was stable in most acidic and basic environment, and gave comparable yield.
Collapse
Affiliation(s)
- Yi-Han Yu
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Jia-Lu He
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Hai-Lan Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Guang-Ju Weng
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Jia-Qi Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Jian-Mei Lu
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Li-Xiong Shao
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| |
Collapse
|
3
|
Almajidi YQ, Majeed AA, Ali E, Abdullaev S, Koka NA, Bisht YS, Fenjan MN, Alawadi A, Alsalamy A, Saleh LH. A versatile magnetic nanocomposite based on cellulose-cyclodextrin hydrogel embedded with graphene oxide and Cu 2O nanoparticles for catalytic application. Int J Biol Macromol 2024; 260:129367. [PMID: 38218269 DOI: 10.1016/j.ijbiomac.2024.129367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
The study focused on creating a novel and environmentally friendly nanocatalyst using cellulose (Cell), β-Cyclodextrin (BCD), graphene oxide (GO), Cu2O, and Fe3O4.The nanocatalyst was prepared by embedding GO and Cu2O into Cell-BCD hydrogel, followed by the in-situ preparation of Fe3O4 magnetic nanoparticles to magnetize the nanocomposite. The effectiveness of this nanocatalyst was evaluated in the one-pot, three-component symmetric Hantzsch reaction for synthesizing 1,4-dihydropyridine derivatives with high yield under mild conditions. This novel nanocatalyst has the potential for broad application in various organic transformations due to its effective catalytic activity, eco-friendly nature, and ease of recovery.
Collapse
Affiliation(s)
- Yasir Qasim Almajidi
- Baghdad College of Medical Sciences-Department of Pharmacy (Pharmaceutics), Baghdad, Iraq
| | - Ali A Majeed
- Department of Pathological Analyses, Faculty of Science, University of Kufa, Najaf, Iraq.
| | - Eyhab Ali
- College of Chemistry, Al-Zahraa University for Women, Karbala, Iraq
| | - Sherzod Abdullaev
- Senior Researcher, Faculty of Chemical Engineering, New Uzbekistan University, Tashkent, Uzbekistan; Senior Researcher, Scientific and Innovation Department, Tashkent State Pedagogical University named after Nizami, Tashkent, Uzbekistan; CEO, Editory LLC, Tashkent, Uzbekistan
| | - Nisar Ahmad Koka
- Department of English, Faculty of Languages and Translation, King Khalid University Abha, Saudi Arabia
| | - Yashwant Singh Bisht
- Department of Mechanical Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, 248007, India
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Luma Hussain Saleh
- Department of Anesthesia Techniques, Al-Noor University College, Nineveh, Iraq
| |
Collapse
|
4
|
Norouzi S, Dashtian K, Amourizi F, Zare-Dorabei R. Red-emissive carbon nanostructure-anchored molecularly imprinted Er-BTC MOF: a biosensor for visual anthrax monitoring. Analyst 2023. [PMID: 37366050 DOI: 10.1039/d3an00865g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Investigating effective fluorescence strategies for real-time monitoring of dipicolinic acid (DPA) is of paramount importance in safeguarding human health. Herein, we present the design of a desirable red-emissive carbon nanostructure anchoring a molecularly imprinted Er-BTC MOF as a fluorescence biosensor for the visual determination of DPA. DPA is a biomarker of Bacillus anthracis, a subcategory of serious infectious diseases and bioweapons. We introduce a paper test strip sensitized with the aforementioned nanostructure, which is integrated with online UV excitation and smartphone digital imaging, resulting in a DPA signal-off sensing platform. The proposed fluorometric visual paper-based biosensor demonstrates wide linear ranges for DPA (10-125 μM) with a LOQ and LOD of 4.32 and 1.28 μM, respectively. The designed platform exhibits impressive emission properties and adaptable surface functional groups, which confirm its desirable selective sensing capabilities against other biological molecules and DPA isomers. As a proof of concept, DPA monitoring is successfully applied to real samples of tap water and urine. This integrated selective paper-based nano-biosensor, coupled with smartphone signal recording, holds great promise for state-of-the-art practical applications including fluorometric/colorimetric detection in healthcare and environmental monitoring, food safety analysis, and point-of-care testing.
Collapse
Affiliation(s)
- Solmaz Norouzi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Kheibar Dashtian
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Fereshteh Amourizi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
5
|
Copper-Based Metal–Organic Frameworks (MOFs) as an Emerging Catalytic Framework for Click Chemistry. Catalysts 2023. [DOI: 10.3390/catal13010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In the extensive terrain of catalytic procedures for the synthesis of organic molecules, metal–organic frameworks (MOFs) as heterogenous catalysts have been investigated in a variety of chemical processes, including Friedel–Crafts reactions, condensation reactions, oxidations, and coupling reactions, and utilized owing to their specific properties such as high porosity, tuneability, extraordinary catalytic activity, and recyclability. The eminent copper-tailored MOF materials can be exceptionally dynamic and regioselective catalysts for click reactions (1,3-dipolar cycloaddition reaction). Considering the fact that Cu(I)-catalyzed alkyne–azide cycloaddition (CuAAC) reactions can be catalyzed by several other copper catalysts such as Cu (II)-β-cyclodextrin, Cu(OAc)2, Fe3O4@SiO2, picolinimidoamide–Cu(II) complex, and Cu(II) porphyrin graphene, the properties of sorption and reusability, as well as the high density of copper-MOFs, open an efficient and robust pathway for regimented catalysis of this reaction. This review provides a comprehensive description and analysis of the relevant literature on the utilization of Cu-MOFs as catalysts for CuAAC ‘click’ reactions published in the past decade.
Collapse
|
6
|
Abbasi S, Naimi-Jamal MR, Javanshir S, Heydari A. Photocatalytic aerobic oxidative functionalization (PAOF) reaction of benzyl alcohols by GO-MIL-100(Fe) composite in glycerol/K 2CO 3 deep eutectic solvent. Sci Rep 2022; 12:18214. [PMID: 36309549 PMCID: PMC9617864 DOI: 10.1038/s41598-022-22369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
An MIL-100 (Fe)/graphene oxide (GO) hybrid, a fairly-known composite, was made through a simple one-step procedure and played a highlighted role in the photo-induced oxidative functionalization of the benzylic C–H bond. To identify the given binary composite, various techniques were applied: FT-IR, P-XRD, SEM, nitrogen absorption–desorption analysis, TGA, TEM, and UV–Visible DRS spectra. Proportions of GO used within the structure of the prepared composite differently ranged from low to high amount, and the most optimized ratio met at 38.5% of GO as the most efficient catalyst. Additionally, the reaction ran in Glycerol/K2CO3 (2:1) as the optimal solvent. The elemental roles of O2·− and OH− were supposed to be the major ones for running a tandem oxidation-Knoevenagel reaction. The heterogeneity and reusability of the catalyst were also examined and confirmed after five successive runs.
Collapse
Affiliation(s)
- Sepideh Abbasi
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 16846-13114, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 16846-13114, Iran.
| | - Shahrzad Javanshir
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Akbar Heydari
- Chemistry Department, Tarbiat Modares University, Tehran, 14155-4838, Iran
| |
Collapse
|
7
|
Karimi M, Sadeghi S, Mohebali H, Bakhti H, Mahjoub A, Heydari A. Confined-based catalyst investigation through the comparative functionalization and defunctionalization of Zr-MOF. RSC Adv 2022; 12:16358-16368. [PMID: 35754901 PMCID: PMC9168834 DOI: 10.1039/d1ra07767h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/08/2022] [Indexed: 12/19/2022] Open
Abstract
In metal-organic frameworks, confined space as a chemical nanoreactor is as important as organocatalysis or coordinatively unsaturated metal site catalysis. In the present study, a set of mixed-ligand structures with UiO-66 architecture have been prepared. To the best of our knowledge, for the first time, structures derived by the solvothermal mixing ligand method and ultrasonic-assisted linker exchange approaches have been compared. Additionally, the relationship between the preparation method, structural properties, and catalytic efficiency of the prepared materials in the Knoevenagel condensation of aldehydes has been investigated. The prepared catalyst is very stable and can be recovered and reused for at least ten periods.
Collapse
Affiliation(s)
- Meghdad Karimi
- Chemistry Department, Tarbiat Modares University P.O. Box 14155-4838 Tehran Iran +98-21-82883444
| | - Samira Sadeghi
- Chemistry Department, Tarbiat Modares University P.O. Box 14155-4838 Tehran Iran +98-21-82883444
| | - Haleh Mohebali
- Chemistry Department, Tarbiat Modares University P.O. Box 14155-4838 Tehran Iran +98-21-82883444
| | - Hamzeh Bakhti
- Chemistry Department, Islamic Azad University Boroujerd Branch Borujerd Iran
| | - Alireza Mahjoub
- Chemistry Department, Tarbiat Modares University P.O. Box 14155-4838 Tehran Iran +98-21-82883444
| | - Akbar Heydari
- Chemistry Department, Tarbiat Modares University P.O. Box 14155-4838 Tehran Iran +98-21-82883444
| |
Collapse
|
8
|
Chahkamali FO, Sobhani S, Sansano JM. A novel base-metal multifunctional catalyst for the synthesis of 2-amino-3-cyano-4H-chromenes by a multicomponent tandem oxidation process. Sci Rep 2022; 12:2867. [PMID: 35190576 PMCID: PMC8861043 DOI: 10.1038/s41598-022-06759-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/01/2022] [Indexed: 12/24/2022] Open
Abstract
A novel base-metal multifunctional nanomagnetic catalyst is prepared by the immobilization of tungstate anions onto γ-Fe2O3 supported with imidazolium moieties. The (γ-Fe2O3-Im-Py)2WO4 was fully characterized using FT-IR, XPS, TEM, FESEM, ICP, TGA, VSM and XRD and used as a multifunctional heterogeneous catalyst for the synthesis of 2-amino-3-cyano-4H-chromenes via a multicomponent tandem oxidation process starting from alcohols under solvent-free conditions. During this process, tungstate catalyzes the oxidation of a wide range of alcohols in the presence of TBHP as a clean source. The in-situ formed aldehydes are condensed with malononitrile and β-dicarbonyl compounds/naphthols/4-hydroxycumarin through promotion by pyridine and imidazolium moieties of the catalyst. By this method, a variety of 2-amino-3-cyano-4H-chromenes are generated in good to high yields from alcohols as inexpensive and easily available starting materials. The catalyst is recovered easily by the aid of an external magnetic field and reused in five successive runs with insignificant decreasing activity.
Collapse
Affiliation(s)
| | - Sara Sobhani
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran.
| | - Jose Miguel Sansano
- Departamento de Química Orgánica, Facultad de Ciencias, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, 03080, Alicante, Spain
| |
Collapse
|
9
|
Agarwal S, Sethiya A, Soni J, Sahiba N, Teli P. An Overview of Recent Advances in the Catalytic Synthesis of Substituted Pyrans. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shikha Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur
| | - Ayushi Sethiya
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur
| | - Jay Soni
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur
| | - Nusrat Sahiba
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur
| | - Pankaj Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur
| |
Collapse
|
10
|
Amino acid-assisted ferrite/MOF composite formation for visible-light induced photocatalytic cascade C=C aerobic oxidative cleavage functionalization. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Akbarian M, Sanchooli E, Oveisi AR, Daliran S. Choline chloride-coated UiO-66-Urea MOF: A novel multifunctional heterogeneous catalyst for efficient one-pot three-component synthesis of 2-amino-4H-chromenes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Karimi M, Sadeghi S, Mohebali H, Azarkhosh Z, Safarifard V, Mahjoub A, Heydari A. Fluorinated solvent-assisted photocatalytic aerobic oxidative amidation of alcohols via visible-light-mediated HKUST-1/Cs-POMoW catalysis. NEW J CHEM 2021. [DOI: 10.1039/d1nj02401a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Successful synthesis and characterization of HKUST-1/Cs-POMoW binary composite, and application in the photocatalytic aerobic oxidative amidation reaction of alcohols under light illuminating in the visible region.
Collapse
Affiliation(s)
- Meghdad Karimi
- Chemistry Department
- Tarbiat Modares University
- Tehran
- Iran
| | - Samira Sadeghi
- Chemistry Department
- Tarbiat Modares University
- Tehran
- Iran
| | - Haleh Mohebali
- Chemistry Department
- Tarbiat Modares University
- Tehran
- Iran
| | | | - Vahid Safarifard
- Department of Chemistry
- Iran University of Science and Technology
- Tehran 16846-13114
- Iran
| | | | - Akbar Heydari
- Chemistry Department
- Tarbiat Modares University
- Tehran
- Iran
| |
Collapse
|
13
|
Karimia M, Sadeghia S, Gavinehroudi RG, Mohebali H, Mahjoub A, Heydari A. g-C 3N 4@Ce-MOF Z-scheme heterojunction photocatalyzed cascade aerobic oxidative functionalization of styrene. NEW J CHEM 2021. [DOI: 10.1039/d1nj00120e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A unique composite of the cerium-based metal–organic framework (Ce-UiO-66) modified with graphitic carbon nitride nanosheets (g-C3N4) has been synthesized. The g-C3N4@Ce-MOF as a photocatalyst was employed in photocatalytic aerobic oxidative Hantzsch pyridine synthesis of styrene.
Collapse
Affiliation(s)
- Meghdad Karimia
- Chemistry Department
- Tarbiat Modare University
- Iran P.O. Box 14155-4838 Tehran
- Iran
| | - Samira Sadeghia
- Chemistry Department
- Tarbiat Modare University
- Iran P.O. Box 14155-4838 Tehran
- Iran
| | | | - Haleh Mohebali
- Chemistry Department
- Tarbiat Modare University
- Iran P.O. Box 14155-4838 Tehran
- Iran
| | - Alireza Mahjoub
- Chemistry Department
- Tarbiat Modare University
- Iran P.O. Box 14155-4838 Tehran
- Iran
| | - Akbar Heydari
- Chemistry Department
- Tarbiat Modare University
- Iran P.O. Box 14155-4838 Tehran
- Iran
| |
Collapse
|
14
|
|
15
|
Kour P, Kumar A. Cinchonine-driven multi-component domino Knoevenagel–Michael strategy: metal-free synthesis of quinoline-based 4H-pyran and tetrahydro-4H-chromene derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04097-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Aryanejad S, Bagherzade G, Moudi M. Green synthesis and characterization of novel Mn-MOFs with catalytic and antibacterial potentials. NEW J CHEM 2020. [DOI: 10.1039/c9nj04977k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthesis and characterization of novel Mn-MOF nanostructures (UoB-4) with high performance as catalysts and antibacterial agents.
Collapse
Affiliation(s)
- Sima Aryanejad
- Department of Chemistry
- Faculty of Sciences
- University of Birjand
- Birjand
- Iran
| | | | - Maryam Moudi
- Department of Biology
- Faculty of Sciences
- University of Birjand
- Birjand
- Iran
| |
Collapse
|
17
|
Kousik S, Velmathi S. Engineering Metal-Organic Framework Catalysts for C-C and C-X Coupling Reactions: Advances in Reticular Approaches from 2014-2018. Chemistry 2019; 25:16451-16505. [PMID: 31313373 DOI: 10.1002/chem.201901987] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/21/2019] [Indexed: 01/24/2023]
Abstract
Metal-organic frameworks (MOFs) are a class of crystalline porous materials that have been actively used for several industrial and synthetic applications. MOFs are spatially and geometrically extrapolated coordination polymers with intriguing properties such as tunable porosity and dimensionality. In terms of their catalytic efficiency, MOFs combine the easy recoverability of heterogeneous catalysts with the increased selectivity of biological catalysts. It is therefore not surprising that a lot of work on optimizing MOF catalysts for organic transformations has been carried out over the past decade. In this review, recent developments in MOF catalysis are summarized, with special attention being paid to C-C, C-N, and C-O coupling reactions. The influence of pore size, pore environment, and load on catalytic activity is described. Post-synthetic stabilization techniques and host-guest interactions in caged MOF scaffolds are detailed. Mechanistic aspects pertaining to the use of MOFs in asymmetric heterogeneous catalysis are highlighted and categorized.
Collapse
Affiliation(s)
- Shravan Kousik
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu, 620015, India
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu, 620015, India
| |
Collapse
|
18
|
Kang X, Yao L, Jiao Z, Zhao B. Two Stable Heterometal‐MOFs as Highly Efficient and Recyclable Catalysts in the CO
2
Coupling Reaction with Aziridines. Chem Asian J 2019; 14:3668-3674. [DOI: 10.1002/asia.201900712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/27/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Xiao‐Min Kang
- College of Chemistry and Key Laboratory of Advanced Energy Material ChemistryNankai University Tianjin 300071 China
| | - Lin‐Hong Yao
- College of Chemistry and Key Laboratory of Advanced Energy Material ChemistryNankai University Tianjin 300071 China
| | - Zhuo‐Hao Jiao
- College of Chemistry and Key Laboratory of Advanced Energy Material ChemistryNankai University Tianjin 300071 China
| | - Bin Zhao
- College of Chemistry and Key Laboratory of Advanced Energy Material ChemistryNankai University Tianjin 300071 China
| |
Collapse
|
19
|
Kumari M, Jain Y, Yadav P, Laddha H, Gupta R. Synthesis of Fe3O4-DOPA-Cu Magnetically Separable Nanocatalyst: A Versatile and Robust Catalyst for an Array of Sustainable Multicomponent Reactions under Microwave Irradiation. Catal Letters 2019. [DOI: 10.1007/s10562-019-02794-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Molaei S, Ghadermazi M. Immobilization of cerium (IV) and erbium (III) in mesoporous MCM‐41: Two novel and highly active heterogeneous catalysts for the synthesis of 5‐substituted tetrazoles, and chemo‐ and homoselective oxidation of sulfides. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Somayeh Molaei
- Department of Chemistry, Faculty of ScienceUniversity of Kurdistan Sanandaj Iran
| | - Mohammad Ghadermazi
- Department of Chemistry, Faculty of ScienceUniversity of Kurdistan Sanandaj Iran
| |
Collapse
|
21
|
From Zn(II) to Cu(II) framework via single-crystal to single-crystal metathesis with superior gas uptake and heterogeneous catalytic properties. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Babaee S, Zolfigol MA, Zarei M, Zamanian J. 1,10-Phenanthroline-Based Molten Salt as a Bifunctional Sulfonic Acid Catalyst: Application to the Synthesis of N
-Heterocycle Compounds via
Anomeric Based Oxidation. ChemistrySelect 2018. [DOI: 10.1002/slct.201801476] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Saeed Babaee
- Department of Organic Chemistry; Faculty of Chemistry; Bu-Ali Sina University; Hamedan 6517838683 Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry; Faculty of Chemistry; Bu-Ali Sina University; Hamedan 6517838683 Iran
| | - Mahmoud Zarei
- Department of Organic Chemistry; Faculty of Chemistry; Bu-Ali Sina University; Hamedan 6517838683 Iran
| | - Javad Zamanian
- Department of Organic Chemistry; Faculty of Chemistry; Bu-Ali Sina University; Hamedan 6517838683 Iran
| |
Collapse
|
23
|
Erbium Salts as Non-Toxic Catalysts Compatible with Alternative Reaction Media. SUSTAINABILITY 2018. [DOI: 10.3390/su10030721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Li M, Gul S, Tian D, Zhou E, Wang Y, Han Y, Yin L, Huang L. Erbium(iii)-based metal–organic frameworks with tunable upconversion emissions. Dalton Trans 2018; 47:12868-12872. [DOI: 10.1039/c8dt02329h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A series of Ln-MOFs with varied upconversion luminescence emissions were obtained, which follows an excited state absorption mechanism.
Collapse
Affiliation(s)
- Mengxue Li
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing
- China
| | - Salma Gul
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing
- China
| | - Dan Tian
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing
- China
| | - Enlong Zhou
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing
- China
| | - Yangbo Wang
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing
- China
| | - Yingdong Han
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing
- China
| | - Lisha Yin
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing
- China
| | - Ling Huang
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing
- China
| |
Collapse
|