1
|
Sadjadi S, Abedian-Dehaghani N, Heydari A, Heravi MM. Chitosan bead containing metal-organic framework encapsulated heteropolyacid as an efficient catalyst for cascade condensation reaction. Sci Rep 2023; 13:2797. [PMID: 36797436 PMCID: PMC9935902 DOI: 10.1038/s41598-023-29548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Using cyclodextrin and chitosan that are bio-based compounds, a novel bi-functional catalytic composite is designed, in which metal-organic framework encapsulated phosphomolybdic acid was incorporated in a dual chitosan-cyclodextrin nanosponge bead. The composite was characterized via XRD, TGA, ICP, BET, NH3-TPD, FTIR, FE-SEM/EDS, elemental mapping analysis and its catalytic activity was examined in alcohol oxidation and cascade alcohol oxidation-Knoevenagel condensation reaction. It was found that the designed catalyst that possess both acidic feature and redox potential could promote both reactions in aqueous media at 55 °C and various substrates with different electronic features could tolerate the aforementioned reactions to furnish the products in 75-95% yield. Furthermore, the catalyst could be readily recovered and recycled for five runs with slight loss of the catalytic activity. Notably, in this composite the synergism between the components led to high catalytic activity, which was superior to each component. In fact, the amino groups on the chitosan served as catalysts, while cyclodextrin nanosponge mainly acted as a phase transfer agent. Moreover, measurement of phosphomolybdic acid leaching showed that its incorporation in metal-organic framework and bead structure could suppress its leaching, which is considered a drawback for this compound. Other merits of this bi-functional catalyst were its simplicity, use of bio-based compounds and true catalysis, which was proved via hot filtration.
Collapse
Affiliation(s)
- Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, P.O. Box 14975-112, Tehran, Iran.
| | - Neda Abedian-Dehaghani
- grid.411354.60000 0001 0097 6984Department of Chemistry, School of Physics and Chemistry, Alzahra University, P.O. Box 1993891176, Vanak, Tehran, Iran
| | - Abolfazl Heydari
- grid.429924.00000 0001 0724 0339Polymer Institute of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia
| | - Majid M. Heravi
- grid.411354.60000 0001 0097 6984Department of Chemistry, School of Physics and Chemistry, Alzahra University, P.O. Box 1993891176, Vanak, Tehran, Iran
| |
Collapse
|
2
|
Uppal J, Mir PA, Chawla A, Kumar N, Kaur G, Bedi PMS, Bhandari DD. Pyranoquinolone derivatives: A potent multi‐targeted pharmacological scaffold. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jasreen Uppal
- Department of Pharmaceutical Chemistry University Institute of Pharma Sciences, Chandigarh University Gharuan, Mohali India
- Department of Pharmaceutical Chemistry Khalsa College of Pharmacy Amritsar India
| | - Prince Ahad Mir
- Department of Pharmaceutical Chemistry Khalsa College of Pharmacy Amritsar India
| | - Apporva Chawla
- Department of Pharmaceutical Chemistry Khalsa College of Pharmacy Amritsar India
| | - Nishant Kumar
- Department of Pharmaceutical Chemistry Khalsa College of Pharmacy Amritsar India
| | - Gurinder Kaur
- Department of Pharmaceutical Chemistry University Institute of Pharma Sciences, Chandigarh University Gharuan, Mohali India
- Department of Pharmaceutical Sciences GNDU Amritsar India
| | | | - Divya Dhawal Bhandari
- Department of Pharmaceutical Chemistry University Institute of Pharma Sciences, Chandigarh University Gharuan, Mohali India
| |
Collapse
|
3
|
Campisciano V, Giacalone F, Gruttadauria M. Is a Catalyst Always Needed? The Case of the Knoevenagel Reaction with Malononitrile. ChemCatChem 2022. [DOI: 10.1002/cctc.202200696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vincenzo Campisciano
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) INSTM UdR – Palermo University of Palermo Viale delle Scienze, Building 17 90128 Palermo Italy
| | - Francesco Giacalone
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) INSTM UdR – Palermo University of Palermo Viale delle Scienze, Building 17 90128 Palermo Italy
| | - Michelangelo Gruttadauria
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) INSTM UdR – Palermo University of Palermo Viale delle Scienze, Building 17 90128 Palermo Italy
| |
Collapse
|
4
|
The Efficient Knoevenagel Condensation Promoted by Bifunctional Heterogenized Catalyst Based Chitosan-EDTA at Room Temperature. Catal Letters 2022. [DOI: 10.1007/s10562-022-04034-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Reis Conceição N, Nobre BP, Karmakar A, M. F. Palavra A, Mahmudov KT, Fátima C. Guedes da Silva M, J. L. Pombeiro A. Knoevenagel condensation reaction in supercritical carbon dioxide medium using a Zn(II) coordination polymer as catalyst. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Green and efficient Knoevenagel condensation catalyzed by pristine Zn-MOFs of amino acid derivatives. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Maleki B, Taheri F, Tayebee R, Adibian F. Dendrimer-Functionalized Magnetic Graphene Oxide for Knoevenagel Condensation. ORG PREP PROCED INT 2021. [DOI: 10.1080/00304948.2021.1875799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Behrooz Maleki
- Department of Chemistry, Hakim Sabzevari University, Sabzevar, Iran
| | - Fatemeh Taheri
- Department of Chemistry, Hakim Sabzevari University, Sabzevar, Iran
| | - Reza Tayebee
- Department of Chemistry, Hakim Sabzevari University, Sabzevar, Iran
| | | |
Collapse
|
8
|
New network polymer functionalized magnetic-mesoporous nanoparticle for rapid adsorption of Hg(II) and sequential efficient reutilization as a catalyst. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118112] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Wang F, Hu K, Bi Y, Wei X, Xue B. Knoevenagel condensation reaction on a new highly-efficient La2O2CO3-TiO2 mixed oxide catalyst: Composition-effects on C C bond formation. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Hajizadeh F, Maleki B, Zonoz FM, Amiri A. Application of structurally enhanced magnetite cored polyamidoamine dendrimer for knoevenagel condensation. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-02071-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
11
|
Zengin N, Burhan H, Şavk A, Göksu H, Şen F. Synthesis of benzylidenemalononitrile by Knoevenagel condensation through monodisperse carbon nanotube-based NiCu nanohybrids. Sci Rep 2020; 10:12758. [PMID: 32728177 PMCID: PMC7391679 DOI: 10.1038/s41598-020-69764-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/20/2020] [Indexed: 11/16/2022] Open
Abstract
Monodisperse nickel/copper nanohybrids (NiCu@MWCNT) based on multi-walled carbon nanotubes (MWCNT) were prepared for the Knoevenagel condensation of aryl and aliphatic aldehydes. The synthesis of these nanohybrids was carried out by the ultrasonic hydroxide assisted reduction method. NiCu@MWCNT nanohybrids were characterized by analytical techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), and Raman spectroscopy. According to characterization results, NiCu@MWCNT showed that these nanohybrids form highly uniform, crystalline, monodisperse, colloidally stable NiCu@MWCNT nanohybrids were successfully synthesized. Thereafter, a model reaction was carried out to obtain benzylidenemalononitrile derivatives using NiCu@MWCNT as a catalyst, and showed high catalytic performance under mild conditions over 10-180 min.
Collapse
Affiliation(s)
- Nursefa Zengin
- Kaynasli Vocational College, Duzce University, Düzce, 81900, Turkey
| | - Hakan Burhan
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Aysun Şavk
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Haydar Göksu
- Kaynasli Vocational College, Duzce University, Düzce, 81900, Turkey.
| | - Fatih Şen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey.
| |
Collapse
|
12
|
Kannappan L, Rajmohan R. Synthesis of structurally enhanced magnetite cored poly(propyleneimine) dendrimer nanohybrid material and evaluation of its functionality in sustainable catalysis of condensation reactions. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Surabhi, Shabir J, Gupta P, Sah D, Mozumdar S. Magnetic core–shell dendritic mesoporous silica nanospheres anchored with diamine as an efficient and recyclable base catalyst. NEW J CHEM 2020. [DOI: 10.1039/d0nj04822d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the present study, diamine-functionalized magnetic core–shell dendritic mesoporous silica nanospheres have been successfully synthesized by an oil–water biphasic stratification-coating strategy.
Collapse
Affiliation(s)
- Surabhi
- Department of Chemistry
- University of Delhi
- India
| | | | | | | | | |
Collapse
|
14
|
Adibian F, Pourali AR, Maleki B, Baghayeri M, Amiri A. One‐pot synthesis of dihydro-1H-indeno[1,2-b] pyridines and tetrahydrobenzo[b] pyran derivatives using a new and efficient nanocomposite catalyst based on N‐butylsulfonate‐functionalized MMWCNTs-D-NH2. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114179] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Patel D, Vithalani R, Modi CK. Highly efficient FeNP-embedded hybrid bifunctional reduced graphene oxide for Knoevenagel condensation with active methylene compounds. NEW J CHEM 2020. [DOI: 10.1039/c9nj05821d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel hybrid bifunctional FeNPs/PPD@rGO for Knoevenagel condensation reaction with 100% conversion and yield.
Collapse
Affiliation(s)
- Dikin Patel
- Applied Chemistry Department
- Faculty of Technology & Engineering
- The Maharaja Sayajirao University of Baroda
- Vadodara-390 001
- India
| | - Ravi Vithalani
- Applied Chemistry Department
- Faculty of Technology & Engineering
- The Maharaja Sayajirao University of Baroda
- Vadodara-390 001
- India
| | - Chetan K. Modi
- Applied Chemistry Department
- Faculty of Technology & Engineering
- The Maharaja Sayajirao University of Baroda
- Vadodara-390 001
- India
| |
Collapse
|
16
|
Mohammadi H, Shaterian HR. Sulfonated magnetic nanocatalyst and application for synthesis of novel Spiro[acridine-9,5′-thiazole]-1,4′-dione derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-04022-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Copper‐Phosphine Supported Fe
3
O
4
@SiO
2
as a Novel Reusable Nanocatalyst‐Catalyzed Tandem Reaction of Indole and Alcohols to Bis(indolyl)methanes under Blue LED Light. ChemistrySelect 2019. [DOI: 10.1002/slct.201901586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Naikwade A, Jagadale M, Kale D, Gajare S, Bansode P, Rashinkar G. Intramolecular O‐arylation using nano‐magnetite supported
N
‐heterocyclic carbene‐copper complex with wingtip ferrocene. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Megha Jagadale
- Department of ChemistryShivaji University Kolhapur 416004, M.S. India
| | - Dolly Kale
- Department of ChemistryShivaji University Kolhapur 416004, M.S. India
| | - Shivanand Gajare
- Department of ChemistryShivaji University Kolhapur 416004, M.S. India
| | - Prakash Bansode
- Department of ChemistryShivaji University Kolhapur 416004, M.S. India
| | - Gajanan Rashinkar
- Department of ChemistryShivaji University Kolhapur 416004, M.S. India
| |
Collapse
|
19
|
Faria RX, de Jesus Hiller N, Salles JP, Resende JALC, Diogo RT, von Ranke NL, Bello ML, Rodrigues CR, Castro HC, de Luna Martins D. Arylboronic acids inhibit P2X7 receptor function and the acute inflammatory response. J Bioenerg Biomembr 2019; 51:277-290. [PMID: 31256283 DOI: 10.1007/s10863-019-09802-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/26/2019] [Indexed: 02/08/2023]
Abstract
The P2X7 receptor (P2X7R) is an ion channel which is activated by interactions with the extracellular ATP molecules. The molecular complex P2X7R/ATP induces conformational changes in the protein subunits, opening a pore in the ion channel macromolecular structure. Currently, the P2X7R has been studied as a potential therapeutic target of anti-inflammatory drugs. Based on this, a series of eight boronic acids (NO) analogs were evaluated on the biologic effect of this pharmacophoric group on the human and murine P2X7R. The boronic acids derivatives NO-01 and NO-12 inhibited in vitro human and murine P2X7R function. These analogs compounds showed effect better than compound BBG and similar to inhibitor A740003 for inhibiting dye uptake, in vitro IL-1β release and ATP-induced paw edema in vivo. In both, in vitro and in vivo assays the compound NO-01 showed to be the hit compound in the present series of the arylboronic acids analogs. The molecular docking suggests that the NO derivatives bind into the upper body domain of the P2X7 pore and that the main intermolecular interaction with the two most active NO derivatives occur with the residues Phe 95, 103 and 293 by hydrophobic interactions and with Leu97, Gln98 and Ser101 by hydrogen bonds.. These results indicate that the boronic acid derivative NO-01 shows the lead compound characteristics to be used as a scaffold structure to the development of new P2X7R inhibitors with anti-inflammatory action.
Collapse
Affiliation(s)
- Robson Xavier Faria
- Laboratory of Toxoplasmosis and Other Protozoans, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Pavilion 108, room 32, CEP, Rio de Janeiro, Fiocruz, 21045-900, Brazil. .,Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Noemi de Jesus Hiller
- Research Group on Catalysis and Synthesis, Laboratory 413, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Juliana Pimenta Salles
- Laboratory of Toxoplasmosis and Other Protozoans, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Pavilion 108, room 32, CEP, Rio de Janeiro, Fiocruz, 21045-900, Brazil
| | | | - Roberta Tosta Diogo
- Laboratory of Toxoplasmosis and Other Protozoans, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Pavilion 108, room 32, CEP, Rio de Janeiro, Fiocruz, 21045-900, Brazil.,Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Natalia Lidmar von Ranke
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.,Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Murilo Lamim Bello
- Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carlos Rangel Rodrigues
- Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Helena Carla Castro
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Daniela de Luna Martins
- Research Group on Catalysis and Synthesis, Laboratory 413, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| |
Collapse
|
20
|
Zhang ZH, Qian BB, Sheng PP, Yang S, Huang XF, Wang JL, Chen Q, Wang L, He MY. Mechanically fabricated Metal-organic framework/resin composite nanoparticles for efficient basic catalysis. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center; Changzhou University; Changzhou 213164 People's Republic of China
| | - Bing-Bing Qian
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center; Changzhou University; Changzhou 213164 People's Republic of China
| | - Pan-Pan Sheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center; Changzhou University; Changzhou 213164 People's Republic of China
| | - Sen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center; Changzhou University; Changzhou 213164 People's Republic of China
| | - Xian-Feng Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center; Changzhou University; Changzhou 213164 People's Republic of China
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou 213164 People's Republic of China
| | - Jin-Long Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center; Changzhou University; Changzhou 213164 People's Republic of China
| | - Qun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center; Changzhou University; Changzhou 213164 People's Republic of China
| | - Liang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center; Changzhou University; Changzhou 213164 People's Republic of China
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center; Changzhou University; Changzhou 213164 People's Republic of China
| |
Collapse
|
21
|
de Resende Filho JBM, Falcão NKSM, Pires GP, de Vasconcelos LFS, Pinheiro SM, dos Santos Filho JM, Frazão Barbosa MI, Doriguetto AC, Teotonio EES, Vale JA. Lanthanide–EDTA complexes covalently bonded on Fe 3O 4@SiO 2 magnetic nanoparticles promote the green, stereoselective synthesis of N-acylhydrazones. NEW J CHEM 2019. [DOI: 10.1039/c9nj02916h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Highly efficient stereoselective synthesis of E–N-acylhydrazones using magnetic nanoparticles-Ln3+ as heterogeneous catalysts.
Collapse
Affiliation(s)
| | | | - Gilvan P. Pires
- Departamento de Química
- Universidade Federal da Paraíba
- 58051-970 João Pessoa-PB
- Brazil
| | | | - Sávio M. Pinheiro
- Departamento de Química
- Universidade Federal da Paraíba
- 58051-970 João Pessoa-PB
- Brazil
| | - José Maurício dos Santos Filho
- Laboratório de Planejamento e Síntese Aplicados à Química Medicinal – SintMed®
- Universidade Federal de Pernambuco
- Recife
- Brazil
| | | | | | | | - Juliana A. Vale
- Departamento de Química
- Universidade Federal da Paraíba
- 58051-970 João Pessoa-PB
- Brazil
| |
Collapse
|
22
|
Kakesh N, Sayyahi S, Badri R. Magnetic nanoparticle coated with ionic organic networks: A robust catalyst for Knoevenagel condensation. CR CHIM 2018. [DOI: 10.1016/j.crci.2018.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Alirezvani Z, Dekamin MG, Davoodi F, Valiey E. Melamine-Functionalized Chitosan: A New Bio-Based Reusable Bifunctional Organocatalyst for the Synthesis of Cyanocinnamonitrile Intermediates and Densely Functionalized Nicotinonitrile Derivatives. ChemistrySelect 2018. [DOI: 10.1002/slct.201802010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zahra Alirezvani
- Pharmaceutical and Heterocyclic Compounds Research Laboratory; Department of Chemistry; Iran University of Science and Technology; Tehran 16846-13114 Iran
| | - Mohammad G. Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory; Department of Chemistry; Iran University of Science and Technology; Tehran 16846-13114 Iran
| | - Farahnaz Davoodi
- Pharmaceutical and Heterocyclic Compounds Research Laboratory; Department of Chemistry; Iran University of Science and Technology; Tehran 16846-13114 Iran
| | - Ehsan Valiey
- Pharmaceutical and Heterocyclic Compounds Research Laboratory; Department of Chemistry; Iran University of Science and Technology; Tehran 16846-13114 Iran
| |
Collapse
|
24
|
Naikwade A, Jagadale M, Kale D, Gajare S, Rashinkar G. Magnetic Nanoparticle Decorated N-Heterocyclic Carbene–Nickel Complex with Pendant Ferrocenyl Group for C–H Arylation of Benzoxazole. Catal Letters 2018. [DOI: 10.1007/s10562-018-2514-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Hiller NDJ, Silva NAAE, Faria RX, Souza ALA, Resende JALC, Borges Farias A, Correia Romeiro N, de Luna Martins D. Synthesis and Evaluation of the Anticancer and Trypanocidal Activities of Boronic Tyrphostins. ChemMedChem 2018; 13:1395-1404. [PMID: 29856519 DOI: 10.1002/cmdc.201800206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/14/2018] [Indexed: 12/13/2022]
Abstract
Molecules containing an (cyanovinyl)arene moiety are known as tyrphostins because of their ability to inhibit proteins from the tyrosine kinase family, an interesting target for the development of anticancer and trypanocidal drugs. In the present work, (E)-(cyanovinyl)benzeneboronic acids were synthesized by Knoevenagel condensations without the use of any catalysts in water through a simple protocol that completely avoided the use of organic solvents in the synthesis and workup process. The in vitro anticancer and trypanocidal activities of the synthesized boronic acids were also evaluated, and it was discovered that the introduction of the boronic acid functionality improved the activity of the boronic tyrphostins. In silico target fishing with the use of a chemogenomic approach suggested that tyrosine-phosphorylation-regulated kinase 1a (DYRK1A) was a potential target for some of the designed compounds.
Collapse
Affiliation(s)
- Noemi de J Hiller
- Research Group on Catalysis and Synthesis (CSI), Universidade Federal Fluminense, Laboratório 413, Instituto de Química, Campus do Valonguinho, Centro, Niterói, RJ, 24020-141, Brazil
| | - Nayane A A E Silva
- Research Group on Catalysis and Synthesis (CSI), Universidade Federal Fluminense, Laboratório 413, Instituto de Química, Campus do Valonguinho, Centro, Niterói, RJ, 24020-141, Brazil
| | - Robson X Faria
- Laboratory of Toxoplasmosis and other Protozoan Diseases, Oswaldo Cruz Institute (Fiocruz), Brasil
| | - André Luís A Souza
- Laboratory of Biochemistry of Peptides, Oswaldo Cruz Institute (Fiocruz), Brazil
| | - Jackson A L C Resende
- Laboratory of Solid-State Chemistry, Universidade Federal do Mato Grosso, Instituto de Ciências Exatas e da Terra, Campus Universitário do Araguaia, Barra do Garças, MT, 78600-000, Brazil
| | - André Borges Farias
- Núcleo de Pesquisas em Ecologia e Desenvolvimento Social (NUPEM), Universidade Federal do Rio de Janeiro, Campus de Macaé, Av. Rotary Club s/n; São José do Barreto, Macaé, RJ, 27901-000, Brazil
| | - Nelilma Correia Romeiro
- Núcleo de Pesquisas em Ecologia e Desenvolvimento Social (NUPEM), Universidade Federal do Rio de Janeiro, Campus de Macaé, Av. Rotary Club s/n; São José do Barreto, Macaé, RJ, 27901-000, Brazil
| | - Daniela de Luna Martins
- Research Group on Catalysis and Synthesis (CSI), Universidade Federal Fluminense, Laboratório 413, Instituto de Química, Campus do Valonguinho, Centro, Niterói, RJ, 24020-141, Brazil
| |
Collapse
|
26
|
Campisciano V, Salvo AMP, Liotta LF, Spinella A, Giacalone F, Gruttadauria M. Cross-Linked Polyamine from Imidazolium-Based Materials: A Simple Route to Useful Catalytic Materials. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Vincenzo Campisciano
- Dipartimento Scienze e Tecnologie Biologiche; Chimiche e Farmaceutiche (STEBICEF); Università degli Studi di Palermo; Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Anna Maria Pia Salvo
- Dipartimento Scienze e Tecnologie Biologiche; Chimiche e Farmaceutiche (STEBICEF); Università degli Studi di Palermo; Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Leonarda Francesca Liotta
- Istituto per lo Studio dei Materiali Nanostrutturati ISMN-CNR; Via Ugo La Malfa 153 90146 Palermo Italy
| | - Alberto Spinella
- Centro Grandi Apparecchiature-ATeN Center; Università degli Studi di Palermo; Via F. Marini 14 90128 Palermo Italy
| | - Francesco Giacalone
- Dipartimento Scienze e Tecnologie Biologiche; Chimiche e Farmaceutiche (STEBICEF); Università degli Studi di Palermo; Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Michelangelo Gruttadauria
- Dipartimento Scienze e Tecnologie Biologiche; Chimiche e Farmaceutiche (STEBICEF); Università degli Studi di Palermo; Viale delle Scienze, Ed. 17 90128 Palermo Italy
| |
Collapse
|
27
|
Magnetic Fe3O4 nanoparticles supported amine: a new, sustainable and environmentally benign catalyst for condensation reactions. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-2914-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|