1
|
Chuangpusri P, Jantasee S, Weerachawanasak P, Tolek W, Ngamcharussrivichai C, Tungasmita DN, Sathitsuksanoh N, Panpranot J. Elucidation of the Catalytic Pathway for the Direct Conversion of Furfuryl Alcohol into γ-Valerolactone over Al 2O 3-SiO 2 Catalysts. ACS OMEGA 2023; 8:46560-46568. [PMID: 38107952 PMCID: PMC10719920 DOI: 10.1021/acsomega.3c05412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
The one-pot conversion of furfuryl alcohol (FA) into GVL was investigated over the sol-gel-synthesized Al2O3-SiO2 (AlSi) catalysts with various Al2O3 loadings (0.2-10 wt %) and commercial zeolites including MFI-1, H-ZSM5, H-beta, and HY-15 in a batch reactor under mild reaction conditions (130 °C, 1 bar N2, and 15-120 min). The reaction pathways depend largely on the acid properties of the catalysts, especially the types of Bronsted (B) and Lewis (L) acid sites. A tandem alcoholysis/hydrogenation/cyclization sequence is dominant on the AlSi catalysts (Al ≥ 4%) and all the zeolites except MFI-1, resulting in complete conversion of FA and GVL with an yield 64-75% with IPL as the major side-product, regardless of the differences in their B/L ratios 0.06-1.35. In the absence of B acid sites (i.e., 0.2% AlSi and MFI-1 catalysts), FA could be straightforwardly converted into GVL on the weak Lewis acid sites from the isolated silanol groups using 2-propanol as a hydrogen source. The AlSi catalysts are promising tunable catalysts for FA conversion with good recyclability.
Collapse
Affiliation(s)
- Pichaya Chuangpusri
- Center
of Excellence on Catalysis and Catalytic Reaction Engineering, Department
of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sasiradee Jantasee
- Department
of Chemical and Materials Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathum, Thani 12110, Thailand
| | - Patcharaporn Weerachawanasak
- Industrial
Chemistry, Department of Chemistry, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang Bangkok 10520, Thailand
| | - Weerachon Tolek
- Center
of Excellence on Catalysis and Catalytic Reaction Engineering, Department
of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Duangamol N. Tungasmita
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Noppadon Sathitsuksanoh
- Department
of Chemical Engineering, University of Louisville, 216 Eastern Parkway, Louisville, Kentucky 40292, United States
| | - Joongjai Panpranot
- Center
of Excellence on Catalysis and Catalytic Reaction Engineering, Department
of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Bio-Circular-Green-economy
Technology & Engineering Center, BCGeTEC, Department of Chemical
Engineering, Faculty of Engineering, Chulalongkorn
University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Novel Sulfonic Acid Polystyrene Microspheres for Alcoholysis of Furfuryl Alcohol to Ethyl Levulinate. Catal Letters 2022. [DOI: 10.1007/s10562-021-03881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Versatile Coordination Polymer Catalyst for Acid Reactions Involving Biobased Heterocyclic Chemicals. Catalysts 2021. [DOI: 10.3390/catal11020190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The chemical valorization/repurposing of biomass-derived chemicals contributes to a biobased economy. Furfural (Fur) is a recognized platform chemical produced from renewable lignocellulosic biomass, and furfuryl alcohol (FA) is its most important application. The aromatic aldehydes Fur and benzaldehyde (Bza) are commonly found in the slate of compounds produced via biomass pyrolysis. On the other hand, glycerol (Gly) is a by-product of the industrial production of biodiesel, derived from fatty acid components of biomass. This work focuses on acid catalyzed routes of Fur, Bza, Gly and FA, using a versatile crystalline lamellar coordination polymer catalyst, namely [Gd(H4nmp)(H2O)2]Cl·2H2O (1) [H6nmp=nitrilotris(methylenephosphonic acid)] synthesized via an ecofriendly, relatively fast, mild microwave-assisted approach (in water, 70 °C/40 min). This is the first among crystalline coordination polymers or metal-organic framework type materials studied for the Fur/Gly and Bza/Gly reactions, giving heterobicyclic products of the type dioxolane and dioxane, and was also effective for the FA/ethanol reaction. 1 was stable and promoted the target catalytic reactions, selectively leading to heterobicyclic dioxane and dioxolane type products in the Fur/Gly and Bza/Gly reactions (up to 91% and 95% total yields respectively, at 90 °C/4 h), and, on the other hand, 2-(ethoxymethyl)furan and ethyl levulinate from heterocyclic FA.
Collapse
|
4
|
Zr-DBS with Sulfonic Group: A Green and Highly Efficient Catalyst for Alcoholysis of Furfuryl Alcohol to Ethyl Levulinate. Catal Letters 2021. [DOI: 10.1007/s10562-020-03516-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Liquid-phase synthesis of butyl levulinate with simultaneous water removal catalyzed by acid ion exchange resins. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Highly Selective Hydrogenation of Furfural to Furan-2-ylmethanol over Zeolitic Imidazolate Frameworks-67-Templated Magnetic Cu–Co/C. Catal Letters 2019. [DOI: 10.1007/s10562-019-02925-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|