1
|
Chen Q, Huang X, Zhang G, Li J, Liu Y, Yan X. Novel targeted pH-responsive drug delivery systems based on PEGMA-modified bimetallic Prussian blue analogs for breast cancer chemotherapy. RSC Adv 2023; 13:1684-1700. [PMID: 36712642 PMCID: PMC9828049 DOI: 10.1039/d2ra06631a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023] Open
Abstract
The development of novel nanoparticle-based drug delivery systems (nano-DDSs) with high loading capacity, low toxicity, precise targeting, and excellent biocompatibility remains urgent and important for the treatment of breast cancer (BC). Herein, novel BC-targeted nano-DDSs based on bimetallic Prussian blue analogs (PBA-DDSs) for intracellular doxorubicin (DOX) delivery and pH-responsive release were developed. Two kinds of bimetallic PBA, namely CuFe (copper-iron) PBA and CoFe (cobalt-iron) PBA, were synthesized by a coprecipitation method, followed by modification with polyethyleneglycol methacrylate (PEGMA) via surface-initiated atom transfer radical polymerization and immobilization with the AS1411 aptamer to obtain two kinds of novel BC-targeted nano-DDS. CuFePBA@PEGMA@AS1411 and CoFePBA@PEGMA@AS1411 showed high drug loading efficiency of 80% and 84%, respectively, for DOX, while 56.0% and 75.9% DOX release could be achieved under acidic pH conditions. In vitro cell viability and in vivo experiments proved the good biocompatibility of both PBA-DDSs. Cellular uptake and in vivo distribution suggested that both PBA-DDSs had efficient nucleolin-targeting capability, indicating the targeted delivery of DOX in tumor tissues. In vivo evaluation of anti-BC efficacy further confirmed that the obtained PBA-DDSs exhibited excellent therapeutic efficacy with limited side-effects. Therefore, the proposed novel PBA-DDSs can be used as secure and effective drug nano-DDSs for BC chemotherapy.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University No. 1, Jianshe East Road Zhengzhou 450052 P. R. China
| | - Xiaoyu Huang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University No. 1, Jianshe East Road Zhengzhou 450052 P. R. China
| | - Geyi Zhang
- Department of Orthopedics, Yellow River Sanmenxia Affiliated Hospital of Henan University of Science and Technology No. 2, Heping West Road Sanmenxia 472000 P. R. China
| | - Jiangnan Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University No. 1, Jianshe East Road Zhengzhou 450052 P. R. China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University No. 1, Jianshe East Road Zhengzhou 450052 P. R. China
| | - Xu Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University No. 1, Jianshe East Road Zhengzhou 450052 P. R. China
| |
Collapse
|
2
|
A green process to recover valuable metals from the spent ternary lithium-ion batteries. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Cisplatin-functionalized nanodiamonds: preparation and characterization, with potential antineoplastic application. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01955-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Xantini Z, Erasmus E. Platinum supported on nanosilica and fibrous nanosilica for hydrogenation reactions. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Spectroscopic characterisation of Grubbs 2nd generation catalyst and its p-cresol derivatives. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Wang P, Zheng J, Ma X, Du X, Gao F, Hao X, Tang B, Abudula A, Guan G. Electroactive magnetic microparticles for the selective elimination of cesium ions in the wastewater. ENVIRONMENTAL RESEARCH 2020; 185:109474. [PMID: 32278925 DOI: 10.1016/j.envres.2020.109474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 02/25/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
To improve operability as well as the removal efficiency for cesium ions in the wastewater treatment, a novel electrochemically switched ion exchange (ESIX) technique by using electroactive Prussian-blue(PB)-based magnetic microparticles (PB@Fe3O4 microparticle) with different uniform particle sizes in the range of 300-900 nm as the adsorption materials was developed. The obtained PB@Fe3O4 microparticle were characterized by Scanning electron microscopy (SEM), Transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and Thermogravimetric analysis (TGA). It is found that the PB can be well coated on the surface of Fe3O4 microsphere, which can be easily adsorbed on the magnetic electrode substrate for the electrochemical adsorption of Cs+ ions. Electrochemical adsorption of 97% Cs+ on PB/Fe3O4 was achieved in less than 10 min, and the maximum adsorption capacity was 16.13 mg/g, and the distribution coefficient (KD) of Cs+ ions reached as high as 3938. In addition, the electrochemical adsorption behavior of PB@Fe3O4 microparticle fitted well with the Freundlich adsorption isotherm and the Pseudo-second-order kinetic models. It is expected that such an ESIX technique using PB@Fe3O4 microparticle can be applied for the separation and recovery of dilute Cs+ ions from cesium-contaminated solution in a practical process.
Collapse
Affiliation(s)
- Peifen Wang
- Energy Conversion Engineering Laboratory, Institute of Regional Innovation, Hirosaki University, 2-1-3 Matsubara, Aomori, 030-0813, Japan; Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan
| | - Junlan Zheng
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Xuli Ma
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR Ch
| | - Xiao Du
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Fengfeng Gao
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Xiaogang Hao
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Bing Tang
- School of Environmental Science and Technology, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Abuliti Abudula
- Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan
| | - Guoqing Guan
- Energy Conversion Engineering Laboratory, Institute of Regional Innovation, Hirosaki University, 2-1-3 Matsubara, Aomori, 030-0813, Japan; Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan.
| |
Collapse
|
7
|
Parrott LK, Erasmus E. Palladium/graphene oxide nanocomposites with carbon nanotubes and/or magnetite for the reduction of nitrophenolic compounds. RSC Adv 2020; 10:32885-32896. [PMID: 35516474 PMCID: PMC9056596 DOI: 10.1039/d0ra04715e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/28/2020] [Indexed: 11/23/2022] Open
Abstract
Graphene oxide (GO) was synthesised via the oxidation of graphite and was characterised using ATR FTIR, PXRD, SEM, TEM and TGA. These techniques confirmed the presence of characteristic oxygen-containing functional groups and the resulting increase in interlayer spacing in the nanostructure. GO is used as the support to form nanocomposites composed of combinations of the following: iron oxide nanoparticles (Fe3O4), carbon nanotubes (CNT) and palladium nanoparticles (Pd). The four final nanocomposites formed are: Pd/GO, Pd/Fe3O4/GO, Pd/CNT/GO, and Pd/CNT/Fe3O4/GO. Key intermediates were analysed using ATR FTIR for the confirmation of the modification. Additionally, all composites and their precursors underwent electron microscopic analysis to visually assess composite morphologies and the size distribution of deposited nanoparticles. The Fe3O4 and Pd nanoparticles were indistinguishable from each other in their spherical shape and particle diameters, which were no bigger than 32 nm. From the TGA, incorporation of Fe3O4, CNT and finally Pd into the nanocomposites increased total thermal stability in terms of mass percentage lost over the temperature programme. GO showed significant decomposition, with all nanocomposites remaining relatively stable up to 120 °C. ICP OES results showed total Pd content by mass percentage for each final composite, varied from 7.9% to 9.1% mass Pd/collective mass. XPS confirmed the expected elemental compositions of composites according to their structures and the Pd0 : PdII ratios are obtained. The nanocomposites were tested for the catalytic reduction of nitrophenols. Pd/CNT/Fe3O4/GO gave the highest TOF′ for the reduction of 4-NP and 2-NP. For the reduction of 3-NP, Pd/GO showed the highest TOF′. Nitrophenol's pKa and catalyst TOF′ correlated in a direct proportional relationship for Pd/GO and Pd/Fe3O4/GO. It was found that Pd0 surpassed PdII in catalytic activity. Reduction of PdII to Pd0 took place during the first catalytic cycle. Comparison of the catalytic activity for the reduction of nitrophenol over palladium-supported graphene oxide nanocomposites modified with iron oxide nanoparticles and/or carbon nanotubes.![]()
Collapse
Affiliation(s)
- L. K. Parrott
- Department of Chemistry
- University of the Free State
- Bloemfontein 9300
- South Africa
| | - E. Erasmus
- Department of Chemistry
- University of the Free State
- Bloemfontein 9300
- South Africa
| |
Collapse
|
8
|
Liu L, Zhao X, Li R, Su H, Zhang H, Liu Q. Subnano Amorphous Fe-Based Clusters with High Mass Activity for Efficient Electrocatalytic Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41432-41439. [PMID: 31610647 DOI: 10.1021/acsami.9b15397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of cost-effective and efficient oxygen-relative electrocatalysts with high mass activity is extremely critical for modern sustainable fuel cells. Here, we present a new type of subnano amorphous transition-metal clusters supported on a hierarchical carbon framework as a promising oxygen reduction reaction (ORR) electrocatalyst, synthesized by a novel "amino-induced spatial confinement" strategy. This developed Fe subnano-cluster/3D-C could deliver outstanding ORR performance with a large mass activity of ∼8600 A gFe-1 at a half-wave potential of 0.92 V, ∼10 times that of the benchmarking Pt/C electrocatalyst. The atomic characterizations and theoretical calculations jointly reveal the robust surface-covalent Fe-N bonds, and the synergistic effect of hetero Fe2+/0 species is essentially beneficial for the adsorption of *O2 and the formation of key *O intermediate during the ORR process, contributing to high oxygen-relative electrocatalytic activity for subnano amorphous Fe clusters.
Collapse
Affiliation(s)
- Lingyun Liu
- School of Physics and Materials Engineering , Hefei Normal University , Hefei 230061 , Anhui , P. R. China
| | - Xu Zhao
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , Anhui , P. R. China
| | - Renwen Li
- School of Physics and Materials Engineering , Hefei Normal University , Hefei 230061 , Anhui , P. R. China
| | - Hui Su
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , Anhui , P. R. China
| | - Hui Zhang
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , Anhui , P. R. China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , Anhui , P. R. China
| |
Collapse
|
9
|
Role of the Outer Metal of Double Metal Cyanides on the Catalytic Efficiency in Styrene Oxidation. Catalysts 2019. [DOI: 10.3390/catal9110905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The catalytic efficiency of double metal cyanide (DMC) has been shown to be very effective in heterogeneous catalysis. The catalytic activity of the outer divalent cations (Mn, Co, Ni, and Cu) of a family of hexacyanocobaltates was examined in the oxidation reaction of styrene, as a model molecule, using tert Butyl Hydroperoxide (TBHP, Luperox®) as an oxidizing agent. The most electronegative outer cations showed the best conversions, with 95% for copper, followed by nickel with 85% conversion of the monomer at atmospheric pressure and temperature of 75 °C. The evidence showed that the catalytic activity and selectivity towards oxidized products are strongly linked to the accurate choice of the outer cation in the DMC together with the oxidizing agent.
Collapse
|
10
|
Hao H, Li L, Somasundaran P, Yuan Z. Adsorption of Pregelatinized Starch for Selective Flocculation and Flotation of Fine Siderite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6878-6887. [PMID: 30998371 DOI: 10.1021/acs.langmuir.9b00669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pregelatinized starch (PS) was used for the selective flocculation and flotation of fine siderite in a carbonate-containing iron ore. With PS, the flotation of fine siderite was improved. The repulsive forces between fine siderite particles and the attractive forces between siderite and hematite or quartz were decreased after treatment with PS, indicating that the aggregation of siderite was enhanced and the aggregations of mixed minerals were weakened. An analysis of the changes in X-ray photoelectron spectra showed that coordination bonds were formed when PS was adsorbed on siderite and hematite. However, PS could not adsorb on quartz. Moreover, the molecular simulation showed that the main mechanism for PS adsorption on siderite was confirmed as a "tail model" with end -OH coordinated with Fe2+. The bridge connection of PS enhanced the flocculation of fine siderite. The flotation of fine siderite was also enhanced. For hematite treated with PS, the combination of coordination bond and hydrogen bond resulted in the "loop model" and "train model" as the main adsorption mechanisms of PS. The molecules covered the hematite surface and prevented the adsorption of the collector. The flotation of hematite was depressed. As a result, the selective flocculation and flotation of fine siderite were realized.
Collapse
Affiliation(s)
- Haiqing Hao
- School of Resources & Civil Engineering , Northeastern University , Shenyang 110819 , China
| | - Lixia Li
- School of Resources & Civil Engineering , Northeastern University , Shenyang 110819 , China
| | - Ponisseril Somasundaran
- Langmuir Center for Colloid and Interface Science , Columbia University , New York , New York 10027 , United States
| | - Zhitao Yuan
- School of Resources & Civil Engineering , Northeastern University , Shenyang 110819 , China
| |
Collapse
|