1
|
Dai X, Han Y, Jiao H, Shi F, Rabeah J, Brückner A. Aerobic Oxidative Synthesis of Formamides from Amines and Bioderived Formyl Surrogates. Angew Chem Int Ed Engl 2024; 63:e202402241. [PMID: 38567831 DOI: 10.1002/anie.202402241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Indexed: 05/16/2024]
Abstract
Herein we present a new strategy for the oxidative synthesis of formamides from various types of amines and bioderived formyl sources (DHA, GLA and GLCA) and molecular oxygen (O2) as oxidant on g-C3N4 supported Cu catalysts. Combined characterization data from EPR, XAFS, XRD and XPS revealed the formation of single CuN4 sites on supported Cuphen/C3N4 catalysts. EPR spin trapping experiments disclosed ⋅OOH radicals as reactive oxygen species and ⋅NR1R2 radicals being responsible for the initial C-C bond cleavage. Control experiments and DFT calculations showed that the successive C-C bond cleavage in DHA proceeds via a reaction mechanism co-mediated by ⋅NR1R2 and ⋅OOH radicals based on the well-equilibrated CuII and CuI cycle. Our catalyst has much higher activity (TOF) than those based on noble metals.
Collapse
Affiliation(s)
- Xingchao Dai
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Yunyan Han
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry & Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou, 730000, China
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Angelika Brückner
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| |
Collapse
|
2
|
Synthesis of Cyclic Carbonate from Carbon Dioxide and Epoxides Using Bicobalt Complexes Absorbed on DFNS. Catal Letters 2022. [DOI: 10.1007/s10562-022-04130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
A.A.M. Alalwani T, Hafdhi Abdtawfeeq T, Riadi Y, Hadrawi SK, Chupradit S, Danshina S. Synthesis of ZnCo2O4-ZnO Nanoparticles for the Effective Elimination of Asphaltene from Crude Oil. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Sustainable oxidation of olefins and sulfides employing nanopolyoxomolybdate supported by ionic liquid on dendritic fibrous nanosilica. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Magnetic silica nanocomposite supported W6O19/amine: A powerful catalyst for the synthesis of biologically active spirooxindole-pyrans. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
|
7
|
|
8
|
Synthesis and Application of Modified Orchard Waste Biochar for Efficient Scavenging of Copper from Aqueous Solutions. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-05362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Aluminium‐based ruthenium/diamine catalysts for produce aliphatic polycarbonates from carbon dioxide and oxetanes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Cui M, Shamsa F. Ionic Liquid Supported on DFNS Nanoparticles Catalyst in Synthesis of Cyclic Carbonates by Oxidative Carboxylation. Catal Letters 2021. [DOI: 10.1007/s10562-021-03616-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Mesoporous Sn(IV) Doping DFNS Supported BaMnO3 Nanoparticles for Formylation of Amines Using Carbon Dioxide. Catal Letters 2021. [DOI: 10.1007/s10562-020-03307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Abeadi N, Zhiani R, Motavalizadehkakhky A, Omidvar M, Sadat Hosseiny M. FPS/[Fe(Bpy)3]2+ NPs as a nanocatalyst for production of quinoline-2-ones through the annulation of ortho-heteroaryl anilines and CO2. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Singh B, Na J, Konarova M, Wakihara T, Yamauchi Y, Salomon C, Gawande MB. Functional Mesoporous Silica Nanomaterials for Catalysis and Environmental Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200136] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Baljeet Singh
- CICECO-Aveiro Institute of Materials, University of Aveiro, Department of Chemistry, Aveiro 3810-193, Portugal
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Muxina Konarova
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Toru Wakihara
- Graduate School of Engineering, The University of Tokyo, 7 Chome-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research Institute for Science and Technology, Waseda University, 2-8-26 Nishi-Waseda, Shinjuku, Tokyo 169-0051, Japan
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland, Australia
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Manoj B. Gawande
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna, 431203 Maharashtra, India
| |
Collapse
|
14
|
Zahedifar M, Pouramiri B, Razavi R. Triethanolamine lactate-supported nanomagnetic cellulose: a green and efficient catalyst for the synthesis of pyrazolo[3,4-b]quinolines and theoretical study. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04117-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Phatake VV, Mishra AA, Bhanage BM. UiO-66 as an efficient catalyst for N-formylation of amines with CO2 and dimethylamine borane as a reducing agent. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Rajendran A, Rajendiran M, Yang ZF, Fan HX, Cui TY, Zhang YG, Li WY. Functionalized Silicas for Metal-Free and Metal-Based Catalytic Applications: A Review in Perspective of Green Chemistry. CHEM REC 2019; 20:513-540. [PMID: 31631504 DOI: 10.1002/tcr.201900056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/23/2019] [Indexed: 12/20/2022]
Abstract
Heterogeneous catalysis plays a key role in promoting green chemistry through many routes. The functionalizable reactive silanols highlight silica as a beguiling support for the preparation of heterogeneous catalysts. Metal active sites anchored on functionalized silica (FS) usually demonstrate the better dispersion and stability due to their firm chemical interaction with FSs. Having certain functional groups in structure, FSs can act as the useful catalysts for few organic reactions even without the need of metal active sites which are termed as the covetous reusable organocatalysts. Magnetic FSs have laid the platform where the effortless recovery of catalysts is realized just using an external magnet, resulting in the simplified reaction procedure. Using FSs of multiple functional groups, we can envisage the shortened reaction pathway and, reduced chemical uses and chemical wastes. Unstable bio-molecules like enzymes have been stabilized when they get chemically anchored on FSs. The resultant solid bio-catalysts exhibited very good reusability in many catalytic reactions. Getting provoked from the green chemistry aspects and benefits of FS-based catalysts, we confer the recent literature and progress focusing on the significance of FSs in heterogeneous catalysis. This review covers the preparative methods, types and catalytic applications of FSs. A special emphasis is given to the metal-free FS catalysts, multiple FS-based catalysts and magnetic FSs. Through this review, we presume that the contribution of FSs to green chemistry can be well understood. The future perspective of FSs and the improvements still required for implementing FS-based catalysts in practical applications have been narrated at the end of this review.
Collapse
Affiliation(s)
- Antony Rajendran
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Marimuthu Rajendiran
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, Maharashtra, India
| | - Zhi-Fen Yang
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Hong-Xia Fan
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Tian-You Cui
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Ya-Gang Zhang
- Department of Chemistry and Chemical Engineering, Xi'an University of Technology, Xi'an, 710054, PR China
| | - Wen-Ying Li
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China.,Department of Chemistry and Chemical Engineering, Xi'an University of Technology, Xi'an, 710054, PR China
| |
Collapse
|
17
|
Amine formylation with CO2 and H2 catalyzed by heterogeneous Pd/PAL catalyst. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63397-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Wu Y, Wang T, Wang H, Wang X, Dai X, Shi F. Active catalyst construction for CO 2 recycling via catalytic synthesis of N-doped carbon on supported Cu. Nat Commun 2019; 10:2599. [PMID: 31197203 PMCID: PMC6565717 DOI: 10.1038/s41467-019-10633-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/21/2019] [Indexed: 11/17/2022] Open
Abstract
Bridging homogeneous and heterogeneous catalysis is a long-term pursuit in the field of catalysis. Herein, we report our results in integration of nano- and molecular catalysis via catalytic synthesis of nitrogen doped carbon layers on AlOx supported nano-Cu which can finely tune the catalytic performance of the supported copper catalyst. This synthetic catalytic material, which can be generated in situ by the reaction of CuAlOx and 1,10-Phen in the presence of hydrogen, could be used for controllable synthesis of N,N-dimethylformamide (DMF) from dimethylamine and CO2/H2 via blocking reaction pathways of further catalytic hydrogenation of DMF to N(CH3)3. Detailed characterizations and DFT calculations reveal that the presence of N-doped layered carbon on the surface of the nano-Cu particles results in higher activation energy barriers during the conversion of DMF to N(CH3)3. Our primary results could promote merging of homogeneous catalysis and heterogeneous catalysis and CO2 recycling. Bridging homogeneous and heterogeneous catalysis is a long-term pursuit in the field of catalysis. Here, the authors present results on integration of nano- and molecular catalysis via catalytic synthesis of nitrogen doped carbon layers on AlOx supported nano-Cu which can finely tune the catalytic performance of the supported copper catalyst.
Collapse
Affiliation(s)
- Yajuan Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, 730000, Lanzhou, China.,University of Chinese Academy of Sciences, No. 19A, Yuquan Road, 100049, Beijing, China
| | - Tao Wang
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Hongli Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, 730000, Lanzhou, China
| | - Xinzhi Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, 730000, Lanzhou, China.,University of Chinese Academy of Sciences, No. 19A, Yuquan Road, 100049, Beijing, China
| | - Xingchao Dai
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, 730000, Lanzhou, China.,University of Chinese Academy of Sciences, No. 19A, Yuquan Road, 100049, Beijing, China
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, 730000, Lanzhou, China.
| |
Collapse
|
19
|
Fei Z, Chen F, Zhong M, Qiu J, Li W, Sadeghzadeh SM. Synthesis and characterization of a novel ruthenium(ii) trisbipyridine complex magnetic nanocomposite for the selective oxidation of phenols. RSC Adv 2019; 9:28078-28088. [PMID: 35530489 PMCID: PMC9070753 DOI: 10.1039/c9ra05079e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/14/2019] [Indexed: 12/31/2022] Open
Abstract
Anchoring ruthenium(ii) trisbipyridine complex [Ru(Bpy)3]2+ into a magnetic dendritic fibrous silica nanostructure produces an unprecedented strong nanocatalyst, FeNi3/DFNS/[Ru(Bpy)3]2+.
Collapse
Affiliation(s)
- Zhengxin Fei
- College of Material Science and Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
- Jinhua Polytechnic
| | - Feng Chen
- College of Material Science and Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Mingqiang Zhong
- College of Material Science and Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | | | - Weidong Li
- Polytechnic Institute of Qianjiang College
- Hangzhou Normal University
- Hangzhou
- China
| | - Seyed Mohsen Sadeghzadeh
- New Materials Technology and Processing Research Center
- Department of Chemistry
- Neyshabur Branch
- Islamic Azad University
- Neyshabur
| |
Collapse
|