1
|
Keogh J, Inrirai P, Artioli N, Manyar H. Nanostructured Solid/Liquid Acid Catalysts for Glycerol Esterification: The Key to Convert Liability into Assets. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:615. [PMID: 38607149 PMCID: PMC11013476 DOI: 10.3390/nano14070615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
Owing to the growing concerns about the dwindling fossil fuel reserves, increasing energy demand, and climate emergency, it is imperative to develop and deploy sustainable energy technologies to ensure future energy supply and to transition to the net-zero world. In this context, there is great potential in the biorefinery concept for supplying drop in biofuels in the form of biodiesel. Biodiesel as a fuel can certainly bridge the gap where electrification or the use of hydrogen is not feasible, for instance, in heavy vehicles and in the farm and marine transportation sectors. However, the biodiesel industry also generates a large amount of crude glycerol as the by-product. Due to the presence of several impurities, crude glycerol may not be a suitable feedstock for all high-value products derived from glycerol, but it fits well with glycerol esterification for producing glycerol acetins, which have numerous applications. This review critically looks at the processes using nanostructured solid/liquid acid catalysts for glycerol esterification, including the economic viability of the scale-up. The homogeneous catalysts reviewed herein include mineral acids and Brønsted acidic ionic liquids, such as SO3H-functionalized and heteropoly acid based ionic liquids. The heterogeneous catalysts reviewed herein include solid acid catalysts such as metal oxides, ion-exchange resins, zeolites, and supported heteropoly acid-based catalysts. Furthermore, the techno-economic analysis studies have shown the process to be highly profitable, confirming the viability of glycerol esterification as a potential tool for economic value addition to the biorefinery industry.
Collapse
Affiliation(s)
- John Keogh
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David-Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| | - Patcharaporn Inrirai
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David-Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| | - Nancy Artioli
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David-Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze, 43, 25123 Brescia, Italy
| | - Haresh Manyar
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David-Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| |
Collapse
|
2
|
Pandit K, Jeffrey C, Keogh J, Tiwari MS, Artioli N, Manyar HG. Techno-Economic Assessment and Sensitivity Analysis of Glycerol Valorization to Biofuel Additives via Esterification. Ind Eng Chem Res 2023; 62:9201-9210. [PMID: 37333489 PMCID: PMC10273226 DOI: 10.1021/acs.iecr.3c00964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
Glycerol is a valuable feedstock, produced in biorefineries as a byproduct of biodiesel production. Esterification of glycerol with acetic acid yields a mixture of mono-, di-, and triacetins. The acetins are commercially important value-added products with a wide range of industrial applications as fuel additives and fine chemicals. Esterification of glycerol to acetins substantially increases the environmental sustainability and economic viability of the biorefinery concept. Among the acetins, diacetin (DA) and triacetin (TA) are considered high-energy-density fuel additives. Herein, we have studied the economic feasibility of a facility producing DA and TA by a two-stage process using 100,000 tons of glycerol per year using Aspen Plus. The capital costs were estimated by Aspen Process Economic Analyzer software. The analysis indicates that the capital costs are 71 M$, while the operating costs are 303 M$/year. The gross profit is 60.5 M$/year, while the NPV of the project is 235 M$ with a payback period of 1.7 years. Sensitivity analysis has indicated that the product price has the most impact on the NPV.
Collapse
Affiliation(s)
- Krutarth Pandit
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, David-Keir Building, Stranmillis Road, Belfast BT9 5AG, U.K.
| | - Callum Jeffrey
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, David-Keir Building, Stranmillis Road, Belfast BT9 5AG, U.K.
| | - John Keogh
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, David-Keir Building, Stranmillis Road, Belfast BT9 5AG, U.K.
| | - Manishkumar S. Tiwari
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, David-Keir Building, Stranmillis Road, Belfast BT9 5AG, U.K.
- Department
of Chemical Engineering, Mukesh Patel School of Technology Management
and Engineering, SVKM’s NMIMS University, Mumbai 400056, Maharashtra, India
| | - Nancy Artioli
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, David-Keir Building, Stranmillis Road, Belfast BT9 5AG, U.K.
- Department
of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze, 43, 25123 Brescia, Italy
| | - Haresh G. Manyar
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, David-Keir Building, Stranmillis Road, Belfast BT9 5AG, U.K.
| |
Collapse
|
3
|
Legutko P, Stelmachowski P, Yu X, Zhao Z, Sojka Z, Kotarba A. Catalytic Soot Combustion─General Concepts and Alkali Promotion. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Piotr Legutko
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Paweł Stelmachowski
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Xuehua Yu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Zbigniew Sojka
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Andrzej Kotarba
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
4
|
Mazumdar NJ, Deshmukh G, Rovea A, Kumar P, Arredondo-Arechavala M, Manyar H. Insights into selective hydrogenation of levulinic acid using copper on manganese oxide octahedral molecular sieves. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220078. [PMID: 35911198 PMCID: PMC9326277 DOI: 10.1098/rsos.220078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/06/2022] [Indexed: 06/13/2023]
Abstract
Selective hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) was studied using copper on manganese oxide octahedral molecular sieve (OMS-2) as catalysts. A range of copper supported on OMS-2 catalysts was prepared using the modified wet-impregnation technique and characterized thoroughly using powder X-ray diffraction, inductively coupled plasma optical emission spectroscopy metal analysis, Fourier transform infrared, high-resolution transmission electron microscopy and N2 sorption analyses. Process parameters for selective hydrogenation of LA to GVL were optimized using the design of experiment (DoE) approach with response surface methodology comprising a central composite design. Using the optimized conditions (190°C reaction temperature, 20 bar H2 pressure and 20 wt% Cu loading on OMS-2), up to 98% yield of GVL could be achieved in water as a solvent. Based on DoE, H2 pressure had the most influence on GVL selectivity followed by catalyst loading used for the hydrogenation of LA. The response surface methodology model also showed synergistic effect of reaction temperature and H2 pressure on the yield of GVL. 20 wt% Cu/OMS-2 catalysts were re-used up to four cycles and showed noticeable loss of activity after the first cycle due to observed leaching of loose Cu species, thereafter the activity loss diminished during subsequent recycles.
Collapse
Affiliation(s)
- Nayan J. Mazumdar
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David-Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| | - Gunjan Deshmukh
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David-Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| | - Anna Rovea
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David-Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| | - Praveen Kumar
- School of Maths and Physics, Queen's University Belfast, David-Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| | - Miryam Arredondo-Arechavala
- School of Maths and Physics, Queen's University Belfast, David-Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| | - Haresh Manyar
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David-Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| |
Collapse
|
5
|
Xu K, Wang M, Zhang Y, Shan W, He H. Promotion Effects of Barium and Cobalt on Manganese Oxide Catalysts for Soot Oxidation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ke Xu
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Wang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, China
| | - Wenpo Shan
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, China
| | - Hong He
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
6
|
Performance and Stability of Wet-Milled CoAl2O4, Ni/CoAl2O4, and Pt,Ni/CoAl2O4 for Soot Combustion. Catalysts 2020. [DOI: 10.3390/catal10040406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Low-energy wet milling was employed to activate commercial CoAl2O4 spinel and disperse mono- and multimetallic nanoparticles on its surface. This method yielded efficient Pt,Ni catalysts for soot oxidation in simulated diesel exhaust conditions. The characterization and activity results indicated that although Ni/CoAl2O4 was highly active, the presence of Pt was required to obtain a stable Ni(0.25 wt. %),Pt(0.75 wt. %)/CoAl2O4 catalyst under the operating conditions of diesel particulate filters, and that hot spots formation must be controlled to avoid the deactivation of the cobalt aluminate. Our work provides important insight for new design strategies to develop high-efficiency low-cost catalysts. Platinum-containing multimetallic nanostructures could efficiently reduce the amount of the costly, but to date non-replaceable, Pt noble metal for a large number of industrially important catalytic processes.
Collapse
|
7
|
Jakubek T, Hudy C, Gryboś J, Manyar H, Kotarba A. Thermal Transformation of Birnessite (OL) Towards Highly Active Cryptomelane (OMS-2) Catalyst for Soot Oxidation. Catal Letters 2019. [DOI: 10.1007/s10562-019-02828-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|