1
|
Salazar Marcano DE, Savić ND, Declerck K, Abdelhameed SAM, Parac-Vogt TN. Reactivity of metal-oxo clusters towards biomolecules: from discrete polyoxometalates to metal-organic frameworks. Chem Soc Rev 2024; 53:84-136. [PMID: 38015569 DOI: 10.1039/d3cs00195d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Metal-oxo clusters hold great potential in several fields such as catalysis, materials science, energy storage, medicine, and biotechnology. These nanoclusters of transition metals with oxygen-based ligands have also shown promising reactivity towards several classes of biomolecules, including proteins, nucleic acids, nucleotides, sugars, and lipids. This reactivity can be leveraged to address some of the most pressing challenges we face today, from fighting various diseases, such as cancer and viral infections, to the development of sustainable and environmentally friendly energy sources. For instance, metal-oxo clusters and related materials have been shown to be effective catalysts for biomass conversion into renewable fuels and platform chemicals. Furthermore, their reactivity towards biomolecules has also attracted interest in the development of inorganic drugs and bioanalytical tools. Additionally, the structural versatility of metal-oxo clusters allows for the efficiency and selectivity of the biomolecular reactions they promote to be readily tuned, thereby providing a pathway towards reaction optimization. The properties of the catalyst can also be improved through incorporation into solid supports or by linking metal-oxo clusters together to form Metal-Organic Frameworks (MOFs), which have been demonstrated to be powerful heterogeneous catalysts. Therefore, this review aims to provide a comprehensive and critical analysis of the state of the art on biomolecular transformations promoted by metal-oxo clusters and their applications, with a particular focus on structure-activity relationships.
Collapse
Affiliation(s)
| | - Nada D Savić
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Kilian Declerck
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | | |
Collapse
|
2
|
Zhou T, Gui C, Sun L, Hu Y, Lyu H, Wang Z, Song Z, Yu G. Energy Applications of Ionic Liquids: Recent Developments and Future Prospects. Chem Rev 2023; 123:12170-12253. [PMID: 37879045 DOI: 10.1021/acs.chemrev.3c00391] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Ionic liquids (ILs) consisting entirely of ions exhibit many fascinating and tunable properties, making them promising functional materials for a large number of energy-related applications. For example, ILs have been employed as electrolytes for electrochemical energy storage and conversion, as heat transfer fluids and phase-change materials for thermal energy transfer and storage, as solvents and/or catalysts for CO2 capture, CO2 conversion, biomass treatment and biofuel extraction, and as high-energy propellants for aerospace applications. This paper provides an extensive overview on the various energy applications of ILs and offers some thinking and viewpoints on the current challenges and emerging opportunities in each area. The basic fundamentals (structures and properties) of ILs are first introduced. Then, motivations and successful applications of ILs in the energy field are concisely outlined. Later, a detailed review of recent representative works in each area is provided. For each application, the role of ILs and their associated benefits are elaborated. Research trends and insights into the selection of ILs to achieve improved performance are analyzed as well. Challenges and future opportunities are pointed out before the paper is concluded.
Collapse
Affiliation(s)
- Teng Zhou
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518048, China
| | - Chengmin Gui
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Longgang Sun
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Yongxin Hu
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Hao Lyu
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Zihao Wang
- Department for Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, D-39106 Magdeburg, Germany
| | - Zhen Song
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gangqiang Yu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| |
Collapse
|
3
|
Abstract
Metal-organic frameworks (MOFs) and ionic liquids (ILs) represent promising materials for adsorption separation. ILs incorporated into MOF materials (denoted as IL/MOF composites) have been developed, and IL/MOF composites combine the advantages of MOFs and ILs to achieve enhanced performance in the adsorption-based separation of fluid mixtures. The designed different ILs are introduced into the various MOFs to tailor their functional properties, which affect the optimal adsorptive separation performance. In this Perspective, the rational fabrication of IL/MOF composites is presented, and their functional properties are demonstrated. This paper provides a critical overview of an emergent class of materials termed IL/MOF composites as well as the recent advances in the applications of IL/MOF composites as adsorbents or membranes in fluid separation. Furthermore, the applications of IL/MOF in adsorptive gas separations (CO2 capture from flue gas, natural gas purification, separation of acetylene and ethylene, indoor pollutants removal) and liquid separations (separation of bioactive components, organic-contaminant removal, adsorptive desulfurization, radionuclide removal) are discussed. Finally, the existing challenges of IL/MOF are highlighted, and an appropriate design strategy direction for the effective exploration of new IL/MOF adsorptive materials is proposed.
Collapse
Affiliation(s)
- Xueqin Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Kai Chen
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Ruili Guo
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
4
|
Rodríguez Mejía Y, Romero Romero F, Basavanag Unnamatla MV, Ballesteros Rivas MF, Varela Guerrero V. Metal-Organic Frameworks as bio- and heterogeneous catalyst supports for biodiesel production. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
As biodiesel (BD)/Fatty Acid Alkyl Esters (FAAE) is derived from vegetable oils and animal fats, it is a cost-effective alternative fuel that could complement diesel. The BD is processed from different catalytic routes of esterification and transesterification through homogeneous (alkaline and acid), heterogeneous and enzymatic catalysis. However, heterogeneous catalysts and biocatalysts play an essential role towards a sustainable alternative to homogeneous catalysts applied in biodiesel production. The main drawback is the supporting material. To overcome this, currently, Metal-Organic Frameworks (MOFs) have gained significant interest as supports for catalysts due to their extremely high surface area and numerous binding sites. This review focuses on the advantages of using various MOFs structures as supports for heterogeneous catalysts and biocatalysts for the eco-friendly biodiesel production process. The characteristics of these materials and their fabrication synthesis are briefly discussed. Moreover, we address in a general way basic items ranging from biodiesel synthesis to applied catalysts, giving great importance to the enzymatic part, mainly to the catalytic mechanism in esterification/transesterification reactions. We provide a summary with recommendations based on the limiting factors.
Collapse
Affiliation(s)
- Yetzin Rodríguez Mejía
- Universidad Autónoma del Estado de México, Facultad de Química , Paseo Colón esq. Paseo Tollocan s/n, 50120 , Toluca , Estado de México , CP 50120 , México
| | - Fernando Romero Romero
- Universidad Autónoma del Estado de México, Facultad de Química , Carretera Toluca-Ixtlahuaca Km. 15, Unidad el Cerrillo , Toluca , Estado de México , 50200 , México
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM , Carretera Toluca-Atlacomulco Km 14.5 , Toluca , Estado de México , 50200 , México
| | - Murali Venkata Basavanag Unnamatla
- Universidad Autónoma del Estado de México, Facultad de Química , Paseo Colón esq. Paseo Tollocan s/n, 50120 , Toluca , Estado de México , CP 50120 , México
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM , Carretera Toluca-Atlacomulco Km 14.5 , Toluca , Estado de México , 50200 , México
| | - Maria Fernanda Ballesteros Rivas
- Universidad Autónoma del Estado de México, Facultad de Química , Paseo Colón esq. Paseo Tollocan s/n, 50120 , Toluca , Estado de México , CP 50120 , México
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM , Carretera Toluca-Atlacomulco Km 14.5 , Toluca , Estado de México , 50200 , México
| | - Victor Varela Guerrero
- Universidad Autónoma del Estado de México, Facultad de Química , Paseo Colón esq. Paseo Tollocan s/n, 50120 , Toluca , Estado de México , CP 50120 , México
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM , Carretera Toluca-Atlacomulco Km 14.5 , Toluca , Estado de México , 50200 , México
| |
Collapse
|
5
|
Javed F, Zimmerman WB, Fazal T, Hafeez A, Mustafa M, Rashid N, Rehman F. Green Synthesis of Biodiesel from Microalgae Cultivated in Industrial Wastewater via Microbubble Induced Esterification using Bio-MOF-Based Heterogeneous Catalyst. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Microwave-Assisted Biodiesel Production Using UiO-66 MOF Derived Nanocatalyst: Process Optimization Using Response Surface Methodology. Catalysts 2022. [DOI: 10.3390/catal12111312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The present work is on the transesterification of soybean oil to biodiesel under microwave irradiation using a biomass and MOF−derived CaO−ZrO2 heterogeneous catalyst. The optimisation of different parameters was processed by adopting a central composite design for a response−surface methodology (RSM). The experimental data were fitted to a quadratic equation employing multiple regressions and investigated by analysis of variance (ANOVA). The catalyst was exhaustively characterised by XRD, TGA, FTIR BET, SEM, TEM, CO2 TPD and XPS. In addition, the synthesized biodiesel was characterized by 1H and 13C NMR, GCMS. The physicochemical properties of the biodiesel were also reported and compared with the ASTM standards. The maximum yield that was obtained after optimization using RSM was 97.22 ± 0.4% with reaction time of 66.2 min, at reaction temperature of 73.2 °C, catalyst loading of 6.5 wt.%, and methanol−to−oil ratio of 9.7 wt.%.
Collapse
|
7
|
Embedding of SO3H-functionalized ionic liquids in mesoporous MIL-101(Cr) through polyoxometalate bridging: A robust heterogeneous catalyst for biodiesel production. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Maru K, Kalla S, Jangir R. MOF/POM hybrids as catalysts for organic transformations. Dalton Trans 2022; 51:11952-11986. [PMID: 35916617 DOI: 10.1039/d2dt01895k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Insertion of molecular metal oxides, e.g. polyoxometalates (POMs), into metal-organic frameworks (MOFs) opens up new research opportunities in various fields, particularly in catalysis. POM/MOF composites have strong acidity, oxygen-rich surface, and redox capacity due to typical characteristics of POMs and the large surface area, highly organized structures, tunable pore size, and shape are due to MOFs. Such hybrid materials have gained a lot of attention due to astonishing structural features, and hence have potential applications in organic catalysis, sorption and separation, proton conduction, magnetism, lithium-ion batteries, supercapacitors, electrochemistry, medicine, bio-fuel, and so on. The exceptional chemical and physical characteristics of POMOFs make them useful as catalysts in simple organic transformations with high capacity and selectivity. Here, the thorough catalytic study starts with a brief introduction related to POMs and MOFs, and is followed by the synthetic strategies and applications of these materials in several catalytic organic transformations. Furthermore, catalytic conversions like oxidation, condensation, esterification, and some other types of catalytic reactions including photocatalytic reactions are discussed in length with their plausible catalytic mechanisms. The disadvantages of the POMOFs and difficulties faced in the field have also been explored briefly from our perspectives.
Collapse
Affiliation(s)
- Ketan Maru
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Sarita Kalla
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Ritambhara Jangir
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| |
Collapse
|
9
|
Shomal R, Ogubadejo B, Shittu T, Mahmoud E, Du W, Al-Zuhair S. Advances in Enzyme and Ionic Liquid Immobilization for Enhanced in MOFs for Biodiesel Production. Molecules 2021; 26:3512. [PMID: 34207684 PMCID: PMC8226643 DOI: 10.3390/molecules26123512] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/30/2021] [Accepted: 06/06/2021] [Indexed: 11/16/2022] Open
Abstract
Biodiesel is a promising candidate for sustainable and renewable energy and extensive research is being conducted worldwide to optimize its production process. The employed catalyst is an important parameter in biodiesel production. Metal-organic frameworks (MOFs), which are a set of highly porous materials comprising coordinated bonds between metals and organic ligands, have recently been proposed as catalysts. MOFs exhibit high tunability, possess high crystallinity and surface area, and their order can vary from the atomic to the microscale level. However, their catalytic sites are confined inside their porous structure, limiting their accessibility for biodiesel production. Modification of MOF structure by immobilizing enzymes or ionic liquids (ILs) could be a solution to this challenge and can lead to better performance and provide catalytic systems with higher activities. This review compiles the recent advances in catalytic transesterification for biodiesel production using enzymes or ILs. The available literature clearly indicates that MOFs are the most suitable immobilization supports, leading to higher biodiesel production without affecting the catalytic activity while increasing the catalyst stability and reusability in several cycles.
Collapse
Affiliation(s)
- Reem Shomal
- Chemical and Petroleum Engineering Department, UAE University, Al Ain 15551, United Arab Emirates; (R.S.); (B.O.); (T.S.); (E.M.)
| | - Babatunde Ogubadejo
- Chemical and Petroleum Engineering Department, UAE University, Al Ain 15551, United Arab Emirates; (R.S.); (B.O.); (T.S.); (E.M.)
| | - Toyin Shittu
- Chemical and Petroleum Engineering Department, UAE University, Al Ain 15551, United Arab Emirates; (R.S.); (B.O.); (T.S.); (E.M.)
| | - Eyas Mahmoud
- Chemical and Petroleum Engineering Department, UAE University, Al Ain 15551, United Arab Emirates; (R.S.); (B.O.); (T.S.); (E.M.)
| | - Wei Du
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;
| | - Sulaiman Al-Zuhair
- Chemical and Petroleum Engineering Department, UAE University, Al Ain 15551, United Arab Emirates; (R.S.); (B.O.); (T.S.); (E.M.)
- National Water and Energy Center, UAE University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
10
|
Zhang Q, Zhang Y, Cheng J, Li H, Ma P. An Overview of Metal-organic Frameworks-based Acid/Base Catalysts for Biofuel Synthesis. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200726230556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Biofuel synthesis is of great significance for producing alternative fuels. Among
the developed catalytic materials, the metal-organic framework-based hybrids used as
acidic, basic, or supported catalysts play major roles in the biodiesel production. This paper
presents a timely and comprehensive review of recent developments on the design and
preparation of metal-organic frameworks-based catalysts used for biodiesel synthesis from
various oil feedstocks, including MILs-based catalysts, ZIFs-based catalysts, UiO-based
catalysts, Cu-BTC-based catalysts, and MOFs-derived porous catalysts. Due to their
unique and flexible structures, excellent thermal and hydrothermal stability, and tunable
host-guest interactions, as compared with other heterogeneous catalysts, metal-organic
framework-based catalysts have good opportunities for application in the production of
biodiesel at industrial scale.
Collapse
Affiliation(s)
- Qiuyun Zhang
- School of Chemistry and Chemical Engineering, Engineering Technology Center of Control and Remediation of Soil Contamination of Provincial Science & Technology Bureau, Anshun University, Anshun, 561000, Guizhou, China
| | - Yutao Zhang
- School of Chemistry and Chemical Engineering, Engineering Technology Center of Control and Remediation of Soil Contamination of Provincial Science & Technology Bureau, Anshun University, Anshun, 561000, Guizhou, China
| | - Jingsong Cheng
- School of Chemistry and Chemical Engineering, Engineering Technology Center of Control and Remediation of Soil Contamination of Provincial Science & Technology Bureau, Anshun University, Anshun, 561000, Guizhou, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Peihua Ma
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| |
Collapse
|
11
|
Zhang Q, Yang T, Lei D, Wang J, Zhang Y. Efficient Production of Biodiesel from Esterification of Lauric Acid Catalyzed by Ammonium and Silver Co-Doped Phosphotungstic Acid Embedded in a Zirconium Metal-Organic Framework Nanocomposite. ACS OMEGA 2020; 5:12760-12767. [PMID: 32548460 PMCID: PMC7288375 DOI: 10.1021/acsomega.0c00375] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
A novel solid acid nanocatalyst (Ag1(NH4)2PW12O40/UiO-66) comprising ammonium and silver co-doped H3PW12O40 and zirconium-based metal-organic frameworks (UiO-66) was synthesized and characterized by Fourier transform infrared spectroscopy, N2 adsorption/desorption, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and ammonia temperature-programmed desorption. The catalytic activity was evaluated for the synthesis of biodiesel via esterification of lauric acid and methanol. The effect of the operating parameters including the molar ratio of lauric acid to methanol, catalyst amount, and reaction temperature and time on the lauric acid conversion was also investigated to obtain optimum reaction conditions. Also, the composite (Ag1(NH4)2PW12O40/UiO-66) was recyclable and reused up to six cycles. Kinetics of the lauric acid esterification has been assumed to be of a pseudo-first order, and the results showed that the activation energy for the esterification process was found to be 35.2 kJ/mol.
Collapse
Affiliation(s)
- Qiuyun Zhang
- School
of Chemistry and Chemical Engineering, Anshun
University, Anshun, Guizhou 561000, China
- Engineering
Technology Center of Control and Remediation of Soil Contamination
of Provincial Science & Technology Bureau, Anshun University, Anshun, Guizhou 561000, China
| | - Tingting Yang
- School
of Chemistry and Chemical Engineering, Anshun
University, Anshun, Guizhou 561000, China
| | - Dandan Lei
- School
of Chemistry and Chemical Engineering, Anshun
University, Anshun, Guizhou 561000, China
| | - Jialu Wang
- School
of Resource and Environmental Engineering, Anshun University, Anshun, Guizhou 561000, China
| | - Yutao Zhang
- Engineering
Technology Center of Control and Remediation of Soil Contamination
of Provincial Science & Technology Bureau, Anshun University, Anshun, Guizhou 561000, China
- School
of Resource and Environmental Engineering, Anshun University, Anshun, Guizhou 561000, China
| |
Collapse
|
12
|
Zhou X, He P, Zhang C. Codoped Phosphotungstate as an Efficient Heterogeneous Catalyst for the Synthesis of n-Butyl Oleate. ACS OMEGA 2020; 5:11529-11534. [PMID: 32478242 PMCID: PMC7254816 DOI: 10.1021/acsomega.0c00693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
A quaternary ammonium and titanium codoped phosphotungstate (QA0.5Ti0.5H0.5PW) catalyst was prepared by the ion exchange method and used as a solid acid catalyst for the synthesis of n-butyl oleate. The catalyst was characterized by Fourier transform infrared, elemental analyzer, energy-dispersive X-ray spectrometry, Brunauer-Emmett-Teller, scanning electron microscopy, and Hammett indicator methods. QA0.5Ti0.5H0.5PW showed a higher catalytic activity than other phosphotungstate solid acid catalysts reported by literature, and the esterification rate reached 99% under optimized conditions. Moreover, QA0.5Ti0.5H0.5PW exhibited well reusability. An esterification rate of 90.1% was still obtained in the eighth run.
Collapse
|
13
|
Abstract
The hybrid materials that are created by supporting or incorporating polyoxometalates (POMs) into/onto metal–organic frameworks (MOFs) have a unique set of properties. They combine the strong acidity, oxygen-rich surface, and redox capability of POMs, while overcoming their drawbacks, such as difficult handling, a low surface area, and a high solubility. MOFs are ideal hosts because of their high surface area, long-range ordered structure, and high tunability in terms of the pore size and channels. In some cases, MOFs add an extra dimension to the functionality of hybrids. This review summarizes the recent developments in the field of POM@MOF hybrids. The most common applied synthesis strategies are discussed, together with major applications, such as their use in catalysis (organocatalysis, electrocatalysis, and photocatalysis). The more than 100 papers on this topic have been systematically summarized in a handy table, which covers almost all of the work conducted in this field up to now.
Collapse
|
14
|
Affiliation(s)
- Tarun Parangi
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Manish Kumar Mishra
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| |
Collapse
|
15
|
Zhang Q, Ling D, Lei D, Wang J, Liu X, Zhang Y, Ma P. Green and Facile Synthesis of Metal-Organic Framework Cu-BTC-Supported Sn (II)-Substituted Keggin Heteropoly Composites as an Esterification Nanocatalyst for Biodiesel Production. Front Chem 2020; 8:129. [PMID: 32257993 PMCID: PMC7094214 DOI: 10.3389/fchem.2020.00129] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/12/2020] [Indexed: 11/13/2022] Open
Abstract
In the present study, metal-organic framework Cu-BTC-supported Sn (II)-substituted Keggin heteropoly nanocomposite (Sn1.5PW/Cu-BTC) was successfully prepared by a simple impregnation method and applied as a novel nanocatalyst for producing biodiesel from oleic acid (OA) through esterification. The nanocatalyst was characterized by Fourier transform infrared spectrometry (FTIR), wide-angle X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption, thermogravimetrics (TG), and NH3-temperature-programmed desorption (NH3-TPD). Accordingly, the synthesized nanocatalyst with a Sn1.5PW/Cu-BTC weight ratio of 1 exhibited a relatively large specific surface area, appropriate pore size, and high acidity. Moreover, an OA conversion of 87.7% was achieved under optimum reaction conditions. The nanocatalyst was reused seven times, and the OA conversion remained at more than 80% after three uses. Kinetic study showed that the esterification reaction followed first-order kinetics, and the activation energy (E a ) was calculated to be 38.3 kJ/mol.
Collapse
Affiliation(s)
- Qiuyun Zhang
- School of Chemistry and Chemical Engineering, Anshun University, Anshun, China
- Engineering Technology Center of Control and Remediation of Soil Contamination of Provincial Science & Technology Bureau, Anshun University, Anshun, China
| | - Dan Ling
- School of Chemistry and Chemical Engineering, Anshun University, Anshun, China
| | - Dandan Lei
- School of Chemistry and Chemical Engineering, Anshun University, Anshun, China
| | - Jialu Wang
- School of Resource and Environmental Engineering, Anshun University, Anshun, China
| | - Xiaofang Liu
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Yutao Zhang
- Engineering Technology Center of Control and Remediation of Soil Contamination of Provincial Science & Technology Bureau, Anshun University, Anshun, China
- School of Resource and Environmental Engineering, Anshun University, Anshun, China
| | - Peihua Ma
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
16
|
Liu S, Li X, Zhang H. Synergistic effects of MOF-76 on layered double hydroxides with superior activity for extractive catalytic oxidative desulfurization. NEW J CHEM 2020. [DOI: 10.1039/d0nj00612b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The combination of MOF-76 with an LDH provides a completely new route for the synthesis of MOF–LDH advanced functional materials.
Collapse
Affiliation(s)
- Siqi Liu
- Institute of Polyoxometalate Chemistry
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Xiaonan Li
- Institute of Polyoxometalate Chemistry
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Hong Zhang
- Institute of Polyoxometalate Chemistry
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| |
Collapse
|
17
|
Zhang H, Li H, Xu CC, Yang S. Heterogeneously Chemo/Enzyme-Functionalized Porous Polymeric Catalysts of High-Performance for Efficient Biodiesel Production. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02748] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Heng Zhang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
- Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Chunbao Charles Xu
- Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450066, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|