1
|
Sharaby MR, Soliman EA, Khalil R. Halochromic smart packaging film based on montmorillonite/polyvinyl alcohol-high amylose starch nanocomposite for monitoring chicken meat freshness. Int J Biol Macromol 2024; 258:128910. [PMID: 38141710 DOI: 10.1016/j.ijbiomac.2023.128910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Polyvinyl alcohol (PVA) was blended with high amylose starch (HAS) at a ratio of 3:1, and reinforced with montmorillonite (MMT K10) at different concentrations (1, 2, 5, and 7 % w/w of polymers) and anthocyanins (ANT) to develop an active and smart packaging film. MMT addition enhanced the film's mechanical, barrier, thermal, and water resistance properties. Incorporating ANT extracted from roselle calyx into the optimal nanocomposite film (MMT/PVA-HAS II) increased the films' antioxidant, pH-response, and antibacterial properties. FTIR, XRD, and SEM confirmed the intermolecular interactions and even distribution of ANT and MMT in the film matrix. Release rate of ANT was dependent on type of simulant, with higher rate in aqueous solutions compared to alcoholic/fatty food simulants, and cytotoxicity evaluation proved safety of films for food packaging applications. Storage experiments confirmed the potential applicability of the novel halochromic smart film as a promising candidate for monitoring chicken spoilage under abusive storage conditions.
Collapse
Affiliation(s)
- Muhammed R Sharaby
- Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab city, Alexandria 21934, Egypt; Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Emad A Soliman
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Rowaida Khalil
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| |
Collapse
|
2
|
Ngungeni Y, A. Aboyewa J, Moabelo KL, Sibuyi NRS, Meyer S, Onani MO, Meyer M, Madiehe AM. Anticancer, Antioxidant, and Catalytic Activities of Green Synthesized Gold Nanoparticles Using Avocado Seed Aqueous Extract. ACS OMEGA 2023; 8:26088-26101. [PMID: 37521675 PMCID: PMC10373464 DOI: 10.1021/acsomega.3c02260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/14/2023] [Indexed: 08/01/2023]
Abstract
Disposal of agricultural waste has a negative impact on the environment and human health and may contribute to the greenhouse effect. The field of nanotechnology could provide alternative solutions to upcycle agricultural wastes in a safer manner into high-end value products. Organic waste from plants contain biomaterials that could serve as reducing and capping agents in the synthesis of nanomaterials with enhanced activities for use in biomedical and environmental applications. Persea americana (avocado) is a fruit with a high nutritional value; however, despite its rich phytochemical profile, its seed is often discarded as waste. Therefore, this study aimed to upcycle avocado seeds through the synthesis of gold nanoparticles (AuNPs) and evaluate their anticancer, antioxidant, and catalytic activities. The biosynthesis of avocado seed extract (AvoSE)-mediated AuNPs (AvoSE-AuNPs) was achieved following the optimization of various reaction parameters, including pH, temperature, extract, and gold salt concentrations. The AvoSE-AuNPs were poly-dispersed and anisotropic, with average core and hydrodynamic sizes of 14 ± 3.7 and 101.39 ± 1.4 nm, respectively. The AvoSE-AuNPs showed excellent antioxidant potential in terms of ferric reducing antioxidant power (343.88 ± 0.001 μmolAAE/L), 2,2-diphenyl-1-picrylhydrazyl (128.80 ± 0.0159 μmolTE/L), and oxygen radical absorbance capacity (1822.02 ± 12.6338 μmolTE/L); significantly reduced the viability of Caco-2 and PC-3 cells in a dose-dependent manner; and efficiently reduced 4-nitrophenol (4-NP) to 4-aminophenol. This study demonstrated how avocado seeds, an agricultural waste, can be used as sources of new bioactive materials for the synthesis of AuNPs, which have excellent antioxidant, anticancer, and catalytic activities, showing AvoSE-AuNPs' versatility in various applications. In addition, the AvoSE-AuNPs exhibited good stability and recyclability during the catalytic activity, which is significant because some of the primary issues with the use of metallic NPs as catalysts are around the cost-effectiveness, recovery, and reusability of the catalyst.
Collapse
Affiliation(s)
- Yonela Ngungeni
- Nanobiotechnology
Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- DSI/Mintek
Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Jumoke A. Aboyewa
- DSI/Mintek
Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Koena L. Moabelo
- Nanobiotechnology
Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- DSI/Mintek
Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Nicole R. S. Sibuyi
- DSI/Mintek
Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Samantha Meyer
- Department
of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Martin O. Onani
- Organometallics
and Nanomaterials, Department of Chemical Sciences, University of the Western Cape, Bellville 7535, South Africa
| | - Mervin Meyer
- DSI/Mintek
Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Abram M. Madiehe
- Nanobiotechnology
Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- DSI/Mintek
Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
3
|
Zhang L, Hu M, Zhao Z, Tian L. Production of Ethyl Levulinate from Biomass‐Derived Carbohydrates and Food/Kitchen Waste Catalyzed by Cucurbit[6]uril‐Sulfate. ChemistrySelect 2022. [DOI: 10.1002/slct.202200076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Luxin Zhang
- College of Environmental and Municipal Engineering Shaanxi Key Laboratory of Environmental Engineering Key Lab of Northwest Water Resource Environment and Ecology MOE Xi'an University of Architecture and Technology Xi'an 710055 China
| | - Menglu Hu
- College of Environmental and Municipal Engineering Shaanxi Key Laboratory of Environmental Engineering Key Lab of Northwest Water Resource Environment and Ecology MOE Xi'an University of Architecture and Technology Xi'an 710055 China
| | - Zhimeng Zhao
- College of Environmental and Municipal Engineering Shaanxi Key Laboratory of Environmental Engineering Key Lab of Northwest Water Resource Environment and Ecology MOE Xi'an University of Architecture and Technology Xi'an 710055 China
| | - Lu Tian
- Key Laboratory of Membrane Separation of Shaanxi Province Research Institute of Membrane Separation Technology of Shaanxi Province Xi'an University of Architecture and Technology Xi'an 710055 China
- State Key Laboratory of Pollution Control and Resource Reuse College of Environmental Science and Engineering Tongji University Shanghai 200092 China
| |
Collapse
|
5
|
Pandya JB, Patel PD, Shinde SM, Jha PK. Interpreting the nature of interactions in the inclusion complex of danofloxacin, a third-generation fluoroquinolone with Cucurbit[7]uril: A computational study. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
7
|
Kanth P C, Trivedi MU, Patel K, Misra NM, Pandey MK. Cucurbituril-Functionalized Nanocomposite as a Promising Industrial Adsorbent for Rapid Cationic Dye Removal. ACS OMEGA 2021; 6:3024-3036. [PMID: 33553920 PMCID: PMC7860087 DOI: 10.1021/acsomega.0c05400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/05/2021] [Indexed: 05/27/2023]
Abstract
A supramolecular cucurbit[6]uril (CB[6])-enriched magnetic montmorillonite (CBCM) nanocomposite was prepared and characterized. CB[6] played a prominent role as a capping agent, helping in better distribution of the nanoparticles, and as a binder between nanoparticles. Montmorillonite provided structural stability and fortified ultrafast adsorption toward dyes. Its application in the removal of cationic dyes from wastewater was systematically assessed. Process parameters such as pH, initial dye concentration, dosage, temperature, and time were optimized. Kinetics and isotherms of the process were described using pseudo-second-order kinetics and the Langmuir isotherm, respectively. CBCM exhibited rapid dye removal capacity in short reaction times with q max of 199.20, 78.31, and 55.62 mg g-1 and K2 of 0.0281, 0.0.0823, and 0.0953 L mg-1 min-1 for crystal violet, methylene blue, and rhodamine B, respectively. Benefiting from the synergetic effects of montmorillonite surface hydrophobicity, abundant carbonyl groups of CB[6], and magnetic properties of copper ferrite, CBCM demonstrated outstanding dye removal capacity, negligible leaching at saturation, and high tolerance toward harsh conditions. This intrinsic nature is expedient in prolonged industrial operations. To demonstrate industrial viability, syringe filtration and continuous flow fixed-bed column operations were validated. The CBCM fixed-bed column demonstrated stable dye removal efficiency with 10-100 mg mL-1 dye at 10-50 mL min-1 flow rates. Utilizing the magnetic and catalytic activities of the copper ferrite nanoparticles, CBCM was recycled using a magnet, regenerated, and reused for several cycles. CB[6] remarkably improved the performance of the nanocomposite and made it suitable for different effluent treatment techniques. This may pave a sustainable way toward the efficient onsite treatment of effluent at the industrial scale.
Collapse
Affiliation(s)
- Chandra Kanth P
- Department of Science, School
of Technology, Pandit Deendayal Petroleum
University, Gandhinagar 382007, India
| | - Maitrayee U. Trivedi
- Department of Science, School
of Technology, Pandit Deendayal Petroleum
University, Gandhinagar 382007, India
| | - Khushali Patel
- Department of Science, School
of Technology, Pandit Deendayal Petroleum
University, Gandhinagar 382007, India
| | - Nirendra M. Misra
- Department of Science, School
of Technology, Pandit Deendayal Petroleum
University, Gandhinagar 382007, India
| | - Manoj Kumar Pandey
- Department of Science, School
of Technology, Pandit Deendayal Petroleum
University, Gandhinagar 382007, India
| |
Collapse
|
8
|
Abstract
Magnetic Cu/CuFe2O4 nanocomposites were prepared by the one-pot thermal decomposition of acetylacetone compounds. Adjusting the molar ratios of Fe to Cu was used to control the content of Cu in the synthetic process. XRD, TEM, XPS and UV-Vis were employed to reveal detailed structural and catalytic activities of Cu/CuFe2O4 nanocomposites. Magnetic measurements demonstrated that Cu/CuFe2O4 nanocomposites possessed a considerable magnetic saturation. Cu/CuFe2O4 nanocomposites showed superb efficiency in the degradation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). 4-NP could be reduced by Cu/CuFe2O4 nanocomposites within 40 s in the attendance of NaBH4. Cu nanocrystals played an indispensable rose in the enhancement of catalytic performance. The synergistic effect of Cu and CuFe2O4 nanocrystals achieved the high-efficiency catalytic reduction for 4-NP. After six recycling experiments, the efficiency of Cu/CuFe2O4 nanocomposites was almost stable. Our work advances a straightforward strategy to synthesize efficient and recoverable Cu/CuFe2O4 nanocomposites, which has promising utilizations in the purifying of nitrophenolic contamination.
Collapse
|