1
|
Xiao Y, Zhan N, Li J, Tan Y, Ding Y. Highly Selective and Stable Cu Catalysts Based on Ni-Al Catalytic Systems for Bioethanol Upgrading to n-Butanol. Molecules 2023; 28:5683. [PMID: 37570654 PMCID: PMC10419762 DOI: 10.3390/molecules28155683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
The catalytic upgrading of ethanol into butanol through the Guerbet coupling reaction has received increasing attention recently due to the sufficient supply of bioethanol and the versatile applications of butanol. In this work, four different supported Cu catalysts, i.e., Cu/Al2O3, Cu/NiO, Cu/Ni3AlOx, and Cu/Ni1AlOx (Ni2+/Al3+ molar ratios of 3 and 1), were applied to investigate the catalytic performances for ethanol conversion. From the results, Ni-containing catalysts exhibit better reactivity; Al-containing catalysts exhibit better stability; but in terms of ethanol conversion, butanol selectivity, and catalyst stability, a corporative effect between Ni-Al catalytic systems can be clearly observed. Combined characterizations such as XRD, TEM, XPS, H2-TPR, and CO2/NH3-TPD were applied to analyze the properties of different catalysts. Based on the results, Cu species provide the active sites for ethanol dehydrogenation/hydrogenation, and the support derived from Ni-Al-LDH supplies appropriate acid-base sites for the aldol condensation, contributing to the high butanol selectivity. In addition, catalysts with strong reducibility (i.e., Cu/NiO) may be easily deconstructed during catalysis, leading to fast deactivation of the catalysts in the Guerbet coupling process.
Collapse
Affiliation(s)
- Yan Xiao
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (Y.X.); (N.Z.); (J.L.)
| | - Nannan Zhan
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (Y.X.); (N.Z.); (J.L.)
| | - Jie Li
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (Y.X.); (N.Z.); (J.L.)
| | - Yuan Tan
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (Y.X.); (N.Z.); (J.L.)
| | - Yunjie Ding
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (Y.X.); (N.Z.); (J.L.)
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- The State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
2
|
Li J, Lin L, Tan Y, Wang S, Yang W, Chen X, Luo W, Ding Y. High performing and stable Cu/NiAlOx catalysts for the continuous catalytic conversion of ethanol into butanol. ChemCatChem 2022. [DOI: 10.1002/cctc.202200539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jie Li
- Zhejiang Normal University Hangzhou Institute of Advanced Studies CHINA
| | - Lu Lin
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian Institute of Chemical Physics CHINA
| | - Yuan Tan
- Zhejiang Normal University Hangzhou Institute of Advanced Studies CHINA
| | - Shiyi Wang
- Zhejiang Normal University Hangzhou Institute of Advanced Studies CHINA
| | - Wenshao Yang
- Zhejiang Normal University Hangzhou Institute of Advanced Studies CHINA
| | - Xingkun Chen
- Zhejiang Normal University Hangzhou Institute of Advanced Studies CHINA
| | - Wenhao Luo
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian Institute of Chemical Physics CHINA
| | - Yunjie Ding
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian National Laboratory for Clean Energy 457 zhongshan Road 116023 Dalian CHINA
| |
Collapse
|
3
|
Ghosh S, Acharyya SS, Yoshida Y, Kaneko T, Iwasawa Y, Sasaki T. Nontraditional Aldol Condensation Performance of Highly Efficient and Reusable Cs + Single Sites in β-Zeolite Channels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18464-18475. [PMID: 35426658 DOI: 10.1021/acsami.2c01312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aldol reactions (self- and cross-aldol condensations) for conjugated enone synthesis were efficiently performed on large-sized Cs+ single sites (1 wt %) confined in β-zeolite channels in toluene, which showed the highest level of catalytic aldol condensation activity among reported zeolite catalysts. In general, aldol condensation reactions for C-C bond synthesis can proceed by acids (e.g., H+), bases (e.g., OH-), enolate species, and acidic or basic solid catalysts. However, the Cs+ single site/β sample without significant acid-base property showed unprecedented, efficient, and reusable catalysis for self-aldol and cross-aldol condensations. Intrinsically inactive Cs+ single sites due to the noble-gas electronic structure were transformed to active Cs+ single sites in β-zeolite channels. Cs+/β has many advantages such as broad substrate scope, eco-friendliness, high product selectivity and yield, and simple work-up procedure. Thus, the Cs+ single site/β provides an attractive and useful methodology for practical C-C bond synthesis. On the basis of the Cs+/β characterization by X-ray photoelectron spectroscopy (XPS), in situ X-ray absorption fine structure (XAFS) (X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS)), and temperature-programmed desorption (TPD), density functional theory (DFT) calculations of the self- and cross-aldol condensation reaction pathways involving the transition states on the Cs+ single site in β-zeolite channel revealed nontraditional concerted interligand bond rearrangement mechanisms.
Collapse
Affiliation(s)
- Shilpi Ghosh
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Shankha S Acharyya
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Yusuke Yoshida
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Takuma Kaneko
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Yasuhiro Iwasawa
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Takehiko Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
4
|
Delarmelina M, Catlow CRA. Cation-doping strategies for tuning of zirconia acid-base properties. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211423. [PMID: 35223057 PMCID: PMC8864357 DOI: 10.1098/rsos.211423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/14/2022] [Indexed: 05/03/2023]
Abstract
The role of Y-, Ca- and Ce-doping of cubic zirconia (c-ZrO2) (111) surface on its acidity, basicity and the interplay between surface acid-base pairs is investigated by computational methods. The most stable surface structures for this investigation were initially determined based on previous studies of Y-doped c-ZrO2 (111) and by a detailed exploration of the most stable configuration for Ca-doped c-ZrO2 (111) and Ce-doped c-ZrO2 (111). Next, surface mapping by basic probe molecules (NH3 and pyridine) revealed a general reduction of the acidity of the surface sites, although a few exceptions were observed for zirconium ions at next nearest neighbour (NNN) positions to the oxygen vacancy and at the nearest neighbour (NN) position to the dopants. Adsorption of CO2 over basic sites revealed a cooperative interplay between acid-base groups. In this case, the overall effect observed was the decrease of the calculated adsorption energies when compared with the pristine surface. Moreover, spontaneous formation of η 3-CO2 systems from initial η 2-CO2 configurations indicates a decrease in the required energy for forming oxygen vacancies in the doped ZrO2 systems at NNN positions or further away from the existing vacancy site.
Collapse
Affiliation(s)
- Maicon Delarmelina
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
- UK Catalysis Hub, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - C. Richard A. Catlow
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
- UK Catalysis Hub, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
- Department of Chemistry, University College London, 20 Gordon Street, London WC1 HOAJ, UK
| |
Collapse
|
5
|
Li H, Chen T, Wang G. Effects of n‐Propanol Co‐feeding in Isobutanol Synthesis from Syngas over K‐CuMgCe Catalyst. ChemistrySelect 2022. [DOI: 10.1002/slct.202103529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hengjie Li
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Tong Chen
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 PR China
| | - Gongying Wang
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 PR China
| |
Collapse
|
6
|
Decarboxylation of p-Coumaric Acid during Pyrolysis on the Nanoceria Surface. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5040048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Temperature-programmed desorption mass spectrometry (TPD MS) was used to study the pyrolysis of p-coumaric acid (pCmA) on the nanoceria surface. The interaction of pCmA with the CeO2 surface was investigated by FT-IR spectroscopy. The obtained data indicated the formation on the nanoceria surface of bidentate carboxylate complexes with chelate (Δν = 62 cm−1) and bridge structure (Δν = 146 cm−1). The thermal decomposition of pCmA over nanoceria occurred in several stages, mainly by decarboxylation. The main decomposition product is 4-vinylphenol (m/z 120). The obtained data can be useful for studying the mechanisms of catalytic thermal transformations of lignin-containing raw materials using catalysts containing cerium oxide and the development of effective technologies for the isolation of pCmA from lignin.
Collapse
|
7
|
Bhasker-Ranganath S, Rahman MS, Zhao C, Calaza F, Wu Z, Xu Y. Elucidating the Mechanism of Ambient-Temperature Aldol Condensation of Acetaldehyde on Ceria. ACS Catal 2021; 11:8621-8634. [PMID: 34306815 PMCID: PMC8294007 DOI: 10.1021/acscatal.1c01216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/16/2021] [Indexed: 12/18/2022]
Abstract
Using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations, we conclusively demonstrate that acetaldehyde (AcH) undergoes aldol condensation when flown over ceria octahedral nanoparticles, and the reaction is desorption-limited at ambient temperature. trans-Crotonaldehyde (CrH) is the predominant product whose coverage builds up on the catalyst with time on stream. The proposed mechanism on CeO2(111) proceeds via AcH enolization (i.e., α C-H bond scission), C-C coupling, and further enolization and dehydroxylation of the aldol adduct, 3-hydroxybutanal, to yield trans-CrH. The mechanism with its DFT-calculated parameters is consistent with reactivity at ambient temperature and with the kinetic behavior of the aldol condensation of AcH reported on other oxides. The slightly less stable cis-CrH can be produced by the same mechanism depending on how the enolate and AcH are positioned with respect to each other in C-C coupling. All vibrational modes in DRIFTS are identified with AcH or trans-CrH, except for a feature at 1620 cm-1 that is more intense relative to the other bands on the partially reduced ceria sample than on the oxidized sample. It is identified to be the C=C stretch mode of CH3CHOHCHCHO adsorbed on an oxygen vacancy. It constitutes a deep energy minimum, rendering oxygen vacancies an inactive site for CrH formation under given conditions.
Collapse
Affiliation(s)
- Suman Bhasker-Ranganath
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton Rouge, Louisiana 70803, United States
| | - Md. Saeedur Rahman
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton Rouge, Louisiana 70803, United States
| | - Chuanlin Zhao
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton Rouge, Louisiana 70803, United States
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Florencia Calaza
- Instituto
de Desarrollo Tecnoloǵico para la Industria Química
(INTEC), CONICET-UNL, Santa Fe 3000, Argentina
| | - Zili Wu
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ye Xu
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
8
|
Effect of the cerium modification on acid–base properties of Mg–Al hydrotalcite-derived oxide system and catalytic performance in ethanol conversion. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-020-01907-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Nezam I, Zak J, Miller DJ. Condensed-Phase Ethanol Conversion to Higher Alcohols over Bimetallic Catalysts. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Iman Nezam
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jason Zak
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Dennis J. Miller
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
10
|
Lei L, Wang Y, Zhang Z, An J, Wang F. Transformations of Biomass, Its Derivatives, and Downstream Chemicals over Ceria Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01900] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lijun Lei
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Yehong Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Zhixin Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Jinghua An
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
11
|
Catalytic Pyrolysis of Aliphatic Carboxylic Acids into Symmetric Ketones over Ceria-Based Catalysts: Kinetics, Isotope Effect and Mechanism. Catalysts 2020. [DOI: 10.3390/catal10020179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ketonization is a promising way for upgrading bio-derived carboxylic acids from pyrolysis bio-oils, waste oils, and fats to produce high value-added chemicals and biofuels. Therefore, an understanding of its mechanism can help to carry out the catalytic pyrolysis of biomass more efficiently. Here we show that temperature-programmed desorption mass spectrometry (TPD-MS) together with linear free energy relationships (LFERs) can be used to identify catalytic pyrolysis mechanisms. We report the kinetics of the catalytic pyrolysis of deuterated acetic acid and a reaction series of linear and branched fatty acids into symmetric ketones on the surfaces of ceria-based oxides. A structure–reactivity correlation between Taft’s steric substituent constants Es* and activation energies of ketonization indicates that this reaction is the sterically controlled reaction. Surface D3-n-acetates transform into deuterated acetone isotopomers with different yield, rate, E≠, and deuterium kinetic isotope effect (DKIE). The obtained values of inverse DKIE together with the structure–reactivity correlation support a concerted mechanism over ceria-based catalysts. These results demonstrate that analysis of Taft’s correlations and using simple equation for estimation of DKIE from TPD-MS data are promising approaches for the study of catalytic pyrolysis mechanisms on a semi-quantitative level.
Collapse
|
12
|
Vlasenko NV, Kyriienko PI, Valihura KV, Kosmambetova GR, Soloviev SO, Strizhak PE. Yttria-Stabilized Zirconia as a High-Performance Catalyst for Ethanol to n-Butanol Guerbet Coupling. ACS OMEGA 2019; 4:21469-21476. [PMID: 31867542 PMCID: PMC6921634 DOI: 10.1021/acsomega.9b03170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/19/2019] [Indexed: 05/14/2023]
Abstract
It has been shown that yttria-stabilized zirconia is an effective catalyst for ethanol to n-butanol Guerbet coupling. The variation of the calcination temperature allows an improvement in the catalytic characteristics of this material via stabilization of the tetragonal phase of zirconia, having higher basicity than the monoclinic one. The treatment of yttria-stabilized zirconia at an optimal calcination temperature of 500 °C induces the increase in surface basicity required for the aldol condensation step, along with a decrease in surface acidity, which is responsible for the side reaction such as ethylene formation. The catalyst obtained significantly exceeds in selectivity and n-butanol yield than individual zirconia and other oxide systems which have been studied in this reaction.
Collapse
|