1
|
Agustiningsih D, Kunarti ES, Nuryono N, Santosa SJ, Darussalam Mardjan MI, Kamiya Y, Otomo R. Novel nickel-immobilized-SiO 2-TiO 2 fine particles in the presence of cetyltrimethylammonium bromide as a catalyst for ultrasound-assisted-Kumada cross-coupling reaction. Heliyon 2024; 10:e34614. [PMID: 39130425 PMCID: PMC11315103 DOI: 10.1016/j.heliyon.2024.e34614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/19/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Kumada cross-coupling reaction is useful for producing biphenyls, where nickel and copper have been widely investigated as catalysts but mainly homogeneous ones. In this study, we investigated ultrasound-assisted-Kumada cross-coupling reaction over the heterogeneous catalysts in which Ni2+, Cu2+, or both was immobilized on aminopropylsilane-functionalized-SiO2-TiO2 prepared in the presence of cetyltrimethylammonium bromide (CTAB). The presence of CTAB effectively prevented the particle growth and therefore SiO2-TiO2 fine particles with high surface area (502 m2 g-1) were formed. The Ni2+-immobilized catalyst showed high catalytic activity for the ultrasound-assisted-Kumada cross-coupling reaction of a wide variety of substrates and was reusable three times. Performing the reaction under ultrasound irradiation was very effective in significantly accelerating the reaction rate compared with the conventional mechanical method. In contrast to Ni2+, Cu2+ was deposited on the support as crystalline Cu(OH)2 and the resulting catalysts with Cu2+ and Ni2+-Cu2+ were less active and less stable under the reaction conditions.
Collapse
Affiliation(s)
- Dewi Agustiningsih
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia
- Graduate School of Environmental Science, Hokkaido University, Nishi 5, Kita 10, Kita-ku, Sapporo, 060–0810, Japan
| | - Eko Sri Kunarti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Nuryono Nuryono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Sri Juari Santosa
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Muhammad Idham Darussalam Mardjan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Yuichi Kamiya
- Faculty of Environmental Earth Science, Hokkaido University, Nishi 5, Kita 10, Kita-ku, Sapporo, 060–0810, Japan
| | - Ryoichi Otomo
- Faculty of Environmental Earth Science, Hokkaido University, Nishi 5, Kita 10, Kita-ku, Sapporo, 060–0810, Japan
| |
Collapse
|
2
|
Al-Zubaidi UZI, Bahrami K, Khodamorady M. Fe 3O 4@SiO 2@CSH +VO 3- as a novel recyclable heterogeneous catalyst with core-shell structure for oxidation of sulfides. Sci Rep 2024; 14:8175. [PMID: 38589430 PMCID: PMC11001875 DOI: 10.1038/s41598-024-58552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
Iron nanoparticles, with low toxicity and many active sites, are among the materials that not only reduce waste along with green chemistry but also increase the separation power and recover the catalyst from the reaction environment. In this study, first, the surface of iron nanoparticles was silanized, and in the next step, the complex of chitosan HCl.VO3 was placed on the surface of Fe3O4 (Fe3O4@SiO2@CSH+VO3-). This nanocatalyst is a novel, recoverable, and potent nanocatalyst with high selectivity for the oxidation of sulfides to sulfoxides. Various physicochemical techniques such as IR, XRD, TGA, SEM, EDX, mapping, TEM, and VSM were used to affirm the well synthesis of the catalyst. Oxidation of sulfides in the presence of hydrogen peroxide as a green oxidant and in ethanol was catalyzed by the Fe3O4@SiO2@CSH+VO3-. All sulfoxides were achieved with high efficiency and in a short time. The notable privileges of this method include facile and economic catalyst synthesis, proper catalyst durability, great performance, simple catalyst isolation, good recovery capability, at least up to 5 times without an index drop in catalytic power.
Collapse
Affiliation(s)
| | - Kiumars Bahrami
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 67144-14971, Iran.
- Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, 67144-14971, Iran.
| | - Minoo Khodamorady
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 67144-14971, Iran
| |
Collapse
|
3
|
Hajighasemi Z, Nahipour A, Ghorbani-Choghamarani A, Taherinia Z. Efficient and biocompatible new palladium-supported boehmite nanoparticles: synthesis, characterization and application in Suzuki-Miura and Mizoroki-Heck coupling reactions. NANOSCALE ADVANCES 2023; 5:4925-4933. [PMID: 37705777 PMCID: PMC10496902 DOI: 10.1039/d3na00403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/13/2023] [Indexed: 09/15/2023]
Abstract
Palladium complex-supported on boehmite (Pd(0)-SMTU-boehmite) nanoparticles were synthesized and characterized by using XRD, SEM, EDS, TGA, BET, ICP and FT-IR techniques. When applied as a new catalyst for C-C coupling reactions of Suzuki-Miyaura and Mizoroki-Heck in PEG-400 solvent, the Pd(0)-SMTU-boehmite nanoparticles showed excellent activity and recyclability. The study of palladium leaching by the ICP-OES technique and hot filtration led to the catalyst exhibiting excellent stability and recyclability.
Collapse
Affiliation(s)
- Zahra Hajighasemi
- Department of Chemistry, Faculty of Science, Ilam University Po. Box 69315-516 Ilam Iran
| | - Ali Nahipour
- Department of Chemistry, Faculty of Science, Ilam University Po. Box 69315-516 Ilam Iran
| | | | - Zahrra Taherinia
- Department of Chemistry, Faculty of Science, Ilam University Po. Box 69315-516 Ilam Iran
| |
Collapse
|
4
|
Bondarian S, Dekamin MG, Valiey E, Naimi-Jamal MR. Supramolecular Cu(ii) nanoparticles supported on a functionalized chitosan containing urea and thiourea bridges as a recoverable nanocatalyst for efficient synthesis of 1 H-tetrazoles. RSC Adv 2023; 13:27088-27105. [PMID: 37701273 PMCID: PMC10493853 DOI: 10.1039/d3ra01989f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
A cost-effective and convenient method for supporting of Cu(ii) nanoparticles on a modified chitosan backbone containing urea and thiourea bridges using thiosemicarbazide (TS), pyromellitic dianhydride (PMDA) and toluene-2,4-diisocyanate (TDI) linkers was designed. The prepared supramolecular (CS-TDI-PMDA-TS-Cu(ii)) nanocomposite was characterized by using Fourier-transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), thermogravimetry/differential thermogravimetry analysis (TGA/DTA), energy-dispersive X-ray spectroscopy (EDS), EDS elemental mapping and X-ray diffraction (XRD). The obtained supramolecular CS-TDI-PMDA-TS-Cu(ii) nanomaterial was demonstrated to act as a multifunctional nanocatalyst for promoting of multicomponent cascade Knoevenagel condensation/click 1,3-dipolar azide-nitrile cycloaddition reactions very efficiently between aromatic aldehydes, sodium azide and malononitrile under solvent-free conditions and affording the corresponding (E)-2-(1H-tetrazole-5-yl)-3-arylacrylenenitrile derivatives. Low catalyst loading, working under solvent-free conditions and short reaction time as well as easy preparation and recycling, and reuse of the catalyst for five consecutive cycles without considerable decrease in its catalytic efficiency make it a suitable candidate for the catalytic reactions promoted by Cu species.
Collapse
Affiliation(s)
- Shirin Bondarian
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Ehsan Valiey
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - M Reza Naimi-Jamal
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| |
Collapse
|
5
|
Khodamorady M, Jafarzadeh M, Bahrami K. Design and Introduction of BNPs@SiO2(CH2)3-TAPC-O-(CH2)2NH2-Pd (0) as an Efficient Nano-catalyst for the Coupling Reactions and Removing of Organic Dyes. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Xu Z, Yan H, Wang Z, Zhang T, Ren Y, Fan T, Liu Y, Guo H. Markedly improved performance of oxide-supported catalysts in hot basic water by three facile ways in synergy. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|