1
|
Nasseri MA, Shahabi M, Alavi G SA, Allahresani A. A novel, efficient and magnetically recyclable Cu-Ni bimetallic alloy nanoparticle as a highly active bifunctional catalyst for Pd-free Sonogashira and C-N cross-coupling reactions: a combined theoretical and experimental study. RSC Adv 2023; 13:22158-22171. [PMID: 37492518 PMCID: PMC10364789 DOI: 10.1039/d3ra01965a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/05/2023] [Indexed: 07/27/2023] Open
Abstract
In this study, a Fe3O4@SiO2@Cyt-Ni/Cu nanocomposite as a novel heterogeneous bimetallic catalyst was synthesized which exhibits efficient performance for the Sonogashira and C-N cross-coupling reactions. The characterization of the catalyst was studied by FT-IR, PXRD, VSM, EDX, TEM, FE-SEM and TGA analyses. The geometry optimization and relative energies of the designed bimetallic complexes were theoretically determined using density functional theory (DFT) calculation at the B3LYP/6-31G**/LANL2DZ level. The catalyst showed good activity in the coupling of various aryl halides with alkynes (Sonogashira reaction) as well as aryl halide with N-heterocycles and achieved coupling products with good to high yields for all of them in a short time. The high catalytic performance could be due to the synergistic effect between Ni and Cu, which causes the reaction to proceed more efficiently. This heterogeneous nanocatalyst could be easily recovered from the reaction mixture with an external magnet and reused for 7 consecutive runs with minimal loss of catalytic activity.
Collapse
Affiliation(s)
- Mohammad Ali Nasseri
- Department of Chemistry, Faculty of Sciences, University of Birjand P. O. Box 97175-615 Birjand Iran
| | - Mansoore Shahabi
- Department of Chemistry, Faculty of Sciences, University of Birjand P. O. Box 97175-615 Birjand Iran
| | - Seyyedeh Ameneh Alavi G
- Department of Chemistry, Faculty of Sciences, University of Birjand P. O. Box 97175-615 Birjand Iran
| | - Ali Allahresani
- Department of Chemistry, Faculty of Sciences, University of Birjand P. O. Box 97175-615 Birjand Iran
| |
Collapse
|
2
|
Philip RM, Saranya PV, Anilkumar G. Nickel‐catalysed amination of arenes and heteroarenes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Gopinathan Anilkumar
- Mahatma Gandhi University School of Chemical Sciences Priyadarsini Hills P O 686560 KOTTAYAM INDIA
| |
Collapse
|
3
|
Gediya P, Vyas VK, Carafa V, Sitwala N, Della Torre L, Poziello A, Kurohara T, Suzuki T, Sanna V, Raguraman V, Suthindhiran K, Ghosh D, Bhatia D, Altucci L, Ghate MD. Discovery of novel tetrahydrobenzo[b]thiophene-3-carbonitriles as histone deacetylase inhibitors. Bioorg Chem 2021; 110:104801. [PMID: 33756235 DOI: 10.1016/j.bioorg.2021.104801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 10/22/2022]
Abstract
The discovery and development of isoform-selective histone deacetylase (HDAC) inhibitor is a challenging task because of the sequence homology among HDAC enzymes. In the present work, novel tetrahydro benzo[b]thiophene-3-carbonitrile based benzamides were designed, synthesized, and evaluated as HDAC inhibitors. Pharmacophore modeling was our main design strategy, and two novel series of tetrahydro benzo[b]thiophene-3-carbonitrile derivatives with piperidine linker (series 1) and piperazine linker (series 2) were identified as HDAC inhibitors. Among all the synthesised compounds, 9h with 4-(aminomethyl) piperidine linker and 14n with piperazine linker demonstrated good activity against human HDAC1 and HDAC6, respectively. Both the compounds also exhibited good antiproliferative activity against several human cancer cell lines. Both these compounds (9h and 14n) also induced cell cycle arrest and apoptosis in U937 and MDA-MB-231 cancer cells. Overall, for the first time, this research discovered potent isoform-selective HDAC inhibitors using cyclic linker instead of the aliphatic chain and aromatic ring system, which were reported in known HDAC inhibitors.
Collapse
Affiliation(s)
- Piyush Gediya
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Vincenzo Carafa
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Nikum Sitwala
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Laura Della Torre
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Angelita Poziello
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Takashi Kurohara
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka, Ibarakishi, Osaka 567-0047, Japan
| | - Takayoshi Suzuki
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka, Ibarakishi, Osaka 567-0047, Japan
| | - Vinod Sanna
- Piramal Pharma Solution, Plot-18 Pharmaceutical Special Economic Zone, Sarkhej-Bawla, NH-8A, Ahmedabad, Gujarat 382213, India
| | - Varalakshmi Raguraman
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, India
| | - K Suthindhiran
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, India
| | - Debarpan Ghosh
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar 382355, Gujarat, India
| | - Dhiraj Bhatia
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar 382355, Gujarat, India
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Manjunath D Ghate
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
4
|
Arora V, Narjinari H, Nandi PG, Kumar A. Recent advances in pincer-nickel catalyzed reactions. Dalton Trans 2021; 50:3394-3428. [PMID: 33595564 DOI: 10.1039/d0dt03593a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organometallic catalysts have played a key role in accomplishing numerous synthetically valuable organic transformations that are either otherwise not possible or inefficient. The use of precious, sparse and toxic 4d and 5d metals are an apparent downside of several such catalytic systems despite their immense success over the last several decades. The use of complexes containing Earth-abundant, inexpensive and less hazardous 3d metals, such as nickel, as catalysts for organic transformations has been an emerging field in recent times. In particular, the versatile nature of the corresponding pincer-metal complexes, which offers great control of their reactivity via countless variations, has garnered great interest among organometallic chemists who are looking for greener and cheaper alternatives. In this context, the current review attempts to provide a glimpse of recent developments in the chemistry of pincer-nickel catalyzed reactions. Notably, there have been examples of pincer-nickel catalyzed reactions involving two electron changes via purely organometallic mechanisms that are strikingly similar to those observed with heavier Pd and Pt analogues. On the other hand, there have been distinct differences where the pincer-nickel complexes catalyze single-electron radical reactions. The applicability of pincer-nickel complexes in catalyzing cross-coupling reactions, oxidation reactions, (de)hydrogenation reactions, dehydrogenative coupling, hydrosilylation, hydroboration, C-H activation and carbon dioxide functionalization has been reviewed here from synthesis and mechanistic points of view. The flurry of global pincer-nickel related activities offer promising avenues in catalyzing synthetically valuable organic transformations.
Collapse
Affiliation(s)
- Vinay Arora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Himani Narjinari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Pran Gobinda Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India. and Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
5
|
Ouyang L, Xia Y, Liao J, Luo R. One‐Pot Transfer Hydrogenation Reductive Amination of Aldehydes and Ketones by Iridium Complexes “on Water”. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lu Ouyang
- School of Pharmacy Gannan Medical University 341000 Ganzhou Jiangxi Province P. R. China
| | - Yanping Xia
- School of Pharmacy Gannan Medical University 341000 Ganzhou Jiangxi Province P. R. China
| | - Jianhua Liao
- School of Pharmacy Gannan Medical University 341000 Ganzhou Jiangxi Province P. R. China
| | - Renshi Luo
- School of Pharmacy Gannan Medical University 341000 Ganzhou Jiangxi Province P. R. China
| |
Collapse
|