1
|
Li H, Cui K, Lei Y, Chen J, Li Y, Liu D, Xiong W. Enhanced Chemoselective Hydrogenation of Cinnamaldehyde via Pt-Fe/Fe-NTA Nanocatalysts Under Low Temperature. Catal Letters 2022. [DOI: 10.1007/s10562-022-04200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Tang Y, Li H, Cui K, Xia Y, Yuan G, Feng J, Xiong W. Chemoselective hydrogenation of cinnamaldehyde over amorphous coordination polymer supported Pt-Co bimetallic nanocatalyst. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
3
|
Vikanova KV, Redina EA, Kapustin GI, Mishin IV, Davshan NA, Kustov LM. Selective hydrogenation of α,β-unsaturated aldehydes over Pt supported on cerium–zirconium mixed oxide of different composition. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Zhang L, Pan J, Liu L, Zhang S, Wang X, Song S, Zhang H. Photothermal-Driven High-Performance Selective Hydrogenation System Enabled by Delicately Designed IrCo Nanocages. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201271. [PMID: 35726120 DOI: 10.1002/smll.202201271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/22/2022] [Indexed: 06/15/2023]
Abstract
The incorporation of a transition metal into a noble metal for the formation of nanoalloys paves a potential way to modulate the electronic structures and spatial arrangement modes, thereby manipulating the target catalysis under the desired reaction pathways. Herein, a top-down synthetic route to fabricate IrCo nanoalloys with delicately designed compositions and morphologies at an extremely low calcination temperature of 200 °C is reported, which efficiently breaks through the thermodynamic limitations caused by the large atomic radii and electronegativity discrepancies between Co and Ir. A high-performance selective hydrogenation system enabled by the synthesized IrCo nanoalloys and the light irradiation is further established. Significantly, the unique properties of IrCo alloy, involving the special capability of generating local heating rather than hot electrons under light irradiation (the hot-electron effect was considered detrimental to hydrogenation reactions), as well as the highly polarized surface which aids in the hydrogen transfer from borane-ammonia complex (AB) to 4-nitrostyrene (4-NS) are discovered.
Collapse
Affiliation(s)
- Lingling Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jing Pan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Li Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shuaishuai Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
5
|
Xu H, Chen M, Ji M. Solid Lewis acid-base pair catalysts constructed by regulations on defects of UiO-66 for the catalytic hydrogenation of cinnamaldehyde. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Wang F, Yu Z, Wei X, Wu Z, Liu N, Xu J, Xue B, Li G. Pt/Ce–La Nanocomposite for Hydrogenation Promoted by a Synergistic Effect of Support with Redox and Basic Property. Catal Letters 2022. [DOI: 10.1007/s10562-022-03934-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Liu Y, Wang X, Zhang C, Xu Q, Dang L, Zhao X, Tan H, Li Y, Zhao F. Defect engineering and spilt-over hydrogen in Pt/(WO 3–TH 2) for selective hydrogenation of CO bonds. NEW J CHEM 2022. [DOI: 10.1039/d2nj02497g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of defects in pre-treatment WOx on the catalytic performance of selective hydrogenation of cinnamaldehyde to cinnamyl alcohol has been revealed.
Collapse
Affiliation(s)
- Yanchun Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xinchao Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chao Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Environment, Northeast Normal University, Changchun 130117, P. R. China
| | - Qiu Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lingling Dang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xia Zhao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Huaqiao Tan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Yangguang Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Fengyu Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
8
|
Duan J, Wang D, Cui R, Zhang H, Zhang B, Guan H, Zhao Y. In‐Situ Incorporation of Pt Nanoparticles on Layered Double Hydroxides for Selective Conversion of Cinnamaldehyde to Cinnamyl Alcohol. ChemistrySelect 2021. [DOI: 10.1002/slct.202104197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jingmin Duan
- Henan University of Engineering Xianghe Road Zhengzhou 451191 P.R. China
| | - Dan Wang
- School of Chemical Engineering Zhengzhou University Zhengzhou 450001 P.R. China
| | - Rongqian Cui
- School of Chemical Engineering Zhengzhou University Zhengzhou 450001 P.R. China
| | - Hongsong Zhang
- Henan University of Engineering Xianghe Road Zhengzhou 451191 P.R. China
| | - Bing Zhang
- School of Chemical Engineering Zhengzhou University Zhengzhou 450001 P.R. China
| | - Huijuan Guan
- Institute of Surface Micro and Nano Materials College of Chemical and Materials Engineering Xuchang University Zhengzhou 461000 P.R. China
| | - Yafei Zhao
- School of Chemical Engineering Zhengzhou University Zhengzhou 450001 P.R. China
| |
Collapse
|
9
|
Wei X, Zhou Y, Sun X, Jiang F, Zhang J, Wu Z, Wang F, Li G. Hydrogenation of pentenal over supported Pt nanoparticles: influence of Lewis-acid sites in the conversion pathway. NEW J CHEM 2021. [DOI: 10.1039/d1nj03979b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The superb TOF and high selectivity of Pt/CeAl are associated with the surface properties (e.g. medium Lewis acidic site). The unsaturated Ce4+/Al3+ cations pairs act as the acid sites and electron acceptors to polarize the CO bonds.
Collapse
Affiliation(s)
- Xuejiao Wei
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yajuan Zhou
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Xiaonan Sun
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Fuhua Jiang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Jintao Zhang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Zeying Wu
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Fei Wang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical and Engineering, Changzhou University, Changzhou 213164, China
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|