Luo YC, Wang MK, Yu LC, Zhang X. Nickel-Catalyzed Selective C(sp
2 )-F Bond Alkylation of Industrially Relevant Hydrofluoroolefin HFO-1234yf.
Angew Chem Int Ed Engl 2023;
62:e202308690. [PMID:
37470697 DOI:
10.1002/anie.202308690]
[Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
The selective transition-metal catalyzed C-F bond functionalization of inexpensive industrial fluorochemicals represents one of the most attractive approaches to valuable fluorinated compounds. However, the selective C(sp2 )-F bond carbofunctionalization of refrigerant hydrofluoroolefins (HFOs) remains challenging. Here, we report a nickel-catalyzed selective C(sp2 )-F bond alkylation of HFO-1234yf with alkylzinc reagents. The resulting 2-trifluoromethylalkenes can serve as a versatile synthon for diversified transformations, including the anti-Markovnikov type hydroalkylation and the synthesis of bioactive molecule analogues. Mechanistic studies reveal that lithium salt is essential to promote the oxidative addition of Ni0 (Ln ) to the C-F bond; the less electron-rich N-based ligands, such as bipyridine and pyridine-oxazoline, feature comparable or even higher oxidative addition rates than the electron-rich phosphine ligands; the strong σ-donating phosphine ligands, such as PMe3 , are detrimental to transmetallation, but the less electron-rich and bulky N-based ligands, such as pyridine-oxazoline, facilitate transmetallation and reductive elimination to form the final product.
Collapse