1
|
Habib A, Bibi Y, Qayyum I, Farooq M. Hierarchical plant extracts in silver nanoparticles preparation: Minuscular survey to achieve enhanced bioactivities. Heliyon 2024; 10:e24303. [PMID: 38293495 PMCID: PMC10824772 DOI: 10.1016/j.heliyon.2024.e24303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Extracts obtained from M. longifolia (Lamiaceae) and R. ellipticus (Rosaceae) were selected to utilize in the reduction and stabilization of silver nanoparticles (AgNPs) for achieving remarkable bioactivities. In brief, the cytotoxic potential of the as synthesize AgNPs was high at higher concentrations. In DPPH assay, maximum antioxidant potential was shown by AgNPs synthesized from M. longifolia. Meanwhile, Methanolic extracts exhibited more antioxidant potential than chloroform based extracts. Further, brine shrimp lethality assay was carried out to achieve 34.6 μg/mL & 25.65 μg/mL LD50 values against the NPs prepared from M. and R., respectively. In addition, antioxidant activities were carried by ABTS Radical cation assay where 38.6 μg/mL and 47 μg/mL IC50 values were obtained for the NPs obtained from M. longifolia and R. ellipticus, respectively. Reducing power assay (0.370-0.15 and 0.37-0.26 mean absorbance) and DPPH (% scavenging: 88.91-46.48 and 88.91-44.78) percentages were recorded for M. and R. synthesized AgNPs, respectively. In brief, M. longifolia functionalized particles performed better in comparison to R. ellipticus treated particles. In addition, the nano assembly dispersed in polar solvent demonstrated better results in comparison to non-polar solvents. In conclusion, the as synthesized AgNPs were better in bioactivities than crude extracts of the selected plants. In future, this work could be extended to isolating active components for the nanofabrication of biologically intelligent nanoparticles for pharmacological interest. In the proposed investigation, the purified bioactivities fractions would be highlighted for further consideration in various medical treatments.
Collapse
Affiliation(s)
- Aroosa Habib
- Department of Plant Sciences, Quaid- i- Azam University Islamabad, 45320, Pakistan
| | - Yamin Bibi
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, 46300, Pakistan
| | - Iqra Qayyum
- Department of Plant Sciences, Quaid- i- Azam University Islamabad, 45320, Pakistan
| | - Muhammad Farooq
- Pakistan Council of Scientific and Industrial Research (PCSIR), Ministry of Science and Technology, 1-Constitution Avenue, Sector G-5/2, Islamabad, 44000, Pakistan
| |
Collapse
|
2
|
Abdullaev SS, Althomali RH, Abdu Musad Saleh E, Robertovich MR, Sapaev IB, Romero-Parra RM, Alsaab HO, Gatea MA, Fenjan MN. Synthesis of novel antibacterial and biocompatible polymer nanocomposite based on polysaccharide gum hydrogels. Sci Rep 2023; 13:16800. [PMID: 37798276 PMCID: PMC10556060 DOI: 10.1038/s41598-023-42146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
According to recent studies on the benefits of natural polymer-based hydrogels in biomedical applications, gellan gum (GG)/acacia gum (AG) hydrogel was prepared in this study. In order to regulate the mechanical behavior of the hydrogel, graphite carbon nitride (g-C3N4) was included in the hydrogel matrix. In addition, metal oxide nanoparticles ZnCuFe2O4 were added to the composite for antibacterial activity. The prepared GG-AG hydrogel/g-C3N4/ZnCuFe2O4 nanobiocomposite was characterized by using FE-SEM, FTIR, EDX, XRD and TGA. The nanobiocomposite exhibited spherical morphology, which was related to the incorporation of the metal oxide nanoparticles. GG-AG hydrogel/g-C3N4/ZnCuFe2O4 nanobiocomposite showed 95.11%, 92.73% and 88.97% biocompatibility toward HEK293T cell lines within 24 h, 48 h and 72 h incubation, respectively, which indicates that this nanobiocomposite is completely biocompatible with healthy cells. Also, the nanobiocomposite was able to inhibit Pseudomonas aeruginosa biofilm growth on its surface up to 87%. Rheological studies showed that the nanobiocomposite has a viscoelastic structure and has a water uptake ratio of 93.2%. In comparison with other similar studies, this nanobiocomposite has exhibited superior antibacterial activity complete biocompatibility and proper mechanical properties, high swelling and water absorption capability. These results indicate that GG-AG hydrogel/g-C3N4/ZnCuFe2O4 nanocomposite can be considered as a potential candidate for biomedical applications such as tissue engineering and wound healing.
Collapse
Affiliation(s)
- Sherzod Shukhratovich Abdullaev
- Faculty of Chemical Engineering, New Uzbekistan University, Tashkent, Uzbekistan
- Scientific Department, Tashkent State Pedagogical University Named After Nizami, Tashkent, Uzbekistan
| | - Raed H Althomali
- Department of Chemistry, College of Arts and Science, Prince Sattam Bin Abdulaziz University, 11991, Wadi Al-Dawasir, Saudi Arabia
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, College of Arts and Science, Prince Sattam Bin Abdulaziz University, 11991, Wadi Al-Dawasir, Saudi Arabia
| | | | - I B Sapaev
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, National Research University, Tashkent, Uzbekistan
- New Uzbekistan University, Tashkent, Uzbekistan
| | | | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia.
| | - M Abdulfadhil Gatea
- Technical Engineering Department College of Technical Engineering, The Islamic University, Najaf, Iraq
- Department of Physics, College of Science, University of Kufa, Kufa, Iraq
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| |
Collapse
|
3
|
Development of a Xanthan Gum Based Superabsorbent and Water Retaining Composites for Agricultural and Forestry Applications. Molecules 2023; 28:molecules28041952. [PMID: 36838941 PMCID: PMC9967022 DOI: 10.3390/molecules28041952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
In this work, bio-based hydrogel composites of xanthan gum and cellulose fibers were developed to be used both as soil conditioners and topsoil covers, to promote plant growth and forest protection. The rheological, morphological, and water absorption properties of produced hydrogels were comprehensively investigated, together with the analysis of the effect of hydrogel addition to the soil. Specifically, the moisture absorption capability of these hydrogels was above 1000%, even after multiple dewatering/rehydration cycles. Moreover, the soil treated with 1.8 wt% of these materials increased the water absorption capacity by approximately 60% and reduced the water evaporation rate, due to the formation of a physical network between the soil, xanthan gum and cellulose fibers. Practical experiments on the growth of herbaceous and tomato plants were also performed, showing that the addition of less than 2 wt% of hydrogels into the soil resulted in higher growth rate values than untreated soil. Furthermore, it has been demonstrated that the use of the produced topsoil covers helped promote plant growth. The exceptional water-regulating properties of the investigated materials could allow for the development of a simple, inexpensive and scalable technology to be extensively applied in forestry and/or agricultural applications, to improve plant resilience and face the challenges related to climate change.
Collapse
|
4
|
Tuteja M, Nagpal K. Recent Advances and Prospects for Plant Gum-Based Drug Delivery Systems: A Comprehensive Review. Crit Rev Ther Drug Carrier Syst 2023; 40:83-124. [PMID: 36734914 DOI: 10.1615/critrevtherdrugcarriersyst.2022042252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This work is an effort to first introduce plant-based gums and discussing their drug delivery applications. The composition of these plant gums and their major characteristics, which make them suitable as pharmaceutical excipients are also described in detail. The various modifications methods such as physical and chemical modifications of gums and polysaccharides have been discussed along with their applications in different fields. Consequently, plant-based gums modification such as etherification and grafting is attracting much scientific attention to satisfy industrial demand. The evaluation tests to characterize gum-based drug delivery systems have been summarized. The release behavior of drug from plant-gum-based drug delivery is being discussed. Thus, this review is an attempt to critically summarize different aspect of plant-gum-based polysaccharides to be utilized in drug delivery systems having potential industrial applications.
Collapse
Affiliation(s)
- Minkal Tuteja
- Gurugram Global College of Pharmacy, Farrukhnagar, Gurugram, Haryana, 122506, India
| | - Kalpana Nagpal
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, UP-201303, India
| |
Collapse
|
5
|
Kamal A, Saba M, Farooq M. Biocompatible formulations based on mycosynthesized iron oxide nanoparticles: Fabrication, characterization, and biological investigation. J Basic Microbiol 2023; 63:156-167. [PMID: 36529705 DOI: 10.1002/jobm.202200560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/22/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
The current study was carried out to synthesize iron oxide nanoparticles (IONPs) via green reduction method from a wild mushroom collected from Quaid-i-Azam University, Islamabad, Pakistan. The collected fungus was identified as Daedalea sp. based on morphological characteristics. Prepared NPs were produced from iron chloride hexahydrate with fungal filtrate via combustion method. The as prepared NPs were characterized by using different techniques for example, scanning electron microscopy (SEM), X-ray diffractions (XRD), Fourier transform infrared spectroscopy (FT-IR), and ultraviolet visible (UV-Vis) spectroscopy. Morphology and size of the NPs were determined by SEM analysis. XRD study revealed crystalline nature of IONPs. The FT-IR spectrum exhibited peak at 3390.26 cm- 1 stretching that described the strong O-H band of the alcohol associated with mushroom texture. The major IONPs dose (0.75 mg/ml) demonstrated 71% growth inhibition against Aspergillus. Excellent antibacterial activities against Pseudomonas aeruginosa (28 mm), and Klesbsilla pneumonia (28 mm) were represented by the fabricated NPs. Further, highest reducing power (53.22 ± 0.72 µg AAE/mg) was shown by the highest administrated dose (400 µg/ml). Maximum 2,2-diphenyl-1-picrylhydrazyl and trolox antioxidant activity free radical scavenging activities at 400 µg/ml IONPs concentration were noted as 51.29 ± 0.48, and 83.12 ± 0.28 trolox equivalent antioxidant capacity, respectively. In brief, the negligible hemolytic activity against human red blood cells at the highest concentration (400 µg/ml), as well as, moderate antioxidant activities at low concentration suggest the application of the fabricated NPs in environmentally sound viable hygiene production.
Collapse
Affiliation(s)
- Asif Kamal
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Malka Saba
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Farooq
- Pakistan Council of Scientific and Industrial Research (PCSIR), PCSIR Head Office, Islamabad, Pakistan
| |
Collapse
|
6
|
Dadashi J, Ali Ghasemzadeh M, Alipour S, Zamani F. A review on catalytic reduction/degradation of organic pollution through silver-based hydrogels. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Green synthesis of bioinspired chitosan-ZnO-based polysaccharide gums hydrogels with propolis extract as novel functional natural biomaterials. Int J Biol Macromol 2022; 211:410-424. [PMID: 35569685 DOI: 10.1016/j.ijbiomac.2022.05.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 01/30/2023]
Abstract
A facile, green synthesis methodology to obtain zinc oxide nanoparticles using three polysaccharide gums (Acacia gum, Guar gum and Xanthan gum) of biological origin was developed. Subsequently, biosynthesized zinc oxide nanoparticles were incorporated into a sustainable chitosan hydrogel matrix functionalized with propolis extract. This study has revealed that the selected polysaccharides as chelates represents a suitable approach to synthesize ZnO nanoparticles of particular interest with controlled morphology. The formation of ZnO nanoparticles using polysaccharide gums was confirmed by FTIR, XRD, UV-Vis spectroscopy, thermal analysis, SEM, Raman and photoluminescence spectroscopies. The rheological behaviour of obtained hydrogels was evaluated. The AFM studies demonstrate that all synthesized chitosan incorporated ZnO composites hydrogels functionalized with propolis extract exhibit corrugated topographies. The present study highlights the possible incorporation of various guest molecules into hydrogel matrix due to its tuneable morphologies. The obtained hydrogel composites were cytocompatible in L929 fibroblast cell culture, in a range of concentrations between 50 and 1000 μg/mL, as assessed by MTT, LDH and Live/Dead double staining assays. By enhancing the biological properties, these novel green hydrogels show attractive superior performance in a wide concentration range to develop future in vivo suitable natural platforms as effective delivery systems of pharmacologic agents for biomedical applications.
Collapse
|
8
|
Mannich-mediated synthesis of a recyclable magnetic kraft lignin-coated copper nanostructure as an efficient catalyst for treatment of environmental contaminants in aqueous media. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Highly Versatile Gum Acacia Based Swellable Microgels Encapsulating Cobalt Nanoparticles; An Approach to Rapid and Recoverable Environmental Nano-catalysis. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01870-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|