1
|
Li P, Xin Y, Zhang H, Yang F, Tang A, Han D, Jia J, Wang J, Li Z, Zhang Z. Recent progress in performance optimization of Cu-SSZ-13 catalyst for selective catalytic reduction of NO x. Front Chem 2022; 10:1033255. [PMID: 36324517 PMCID: PMC9621587 DOI: 10.3389/fchem.2022.1033255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/28/2022] [Indexed: 11/14/2022] Open
Abstract
Nitrogen oxides (NO x ), which are the major gaseous pollutants emitted by mobile sources, especially diesel engines, contribute to many environmental issues and harm human health. Selective catalytic reduction of NO x with NH3 (NH3-SCR) is proved to be one of the most efficient techniques for reducing NO x emission. Recently, Cu-SSZ-13 catalyst has been recognized as a promising candidate for NH3-SCR catalyst for reducing diesel engine NO x emissions due to its wide active temperature window and excellent hydrothermal stability. Despite being commercialized as an advanced selective catalytic reduction catalyst, Cu-SSZ-13 catalyst still confronts the challenges of low-temperature activity and hydrothermal aging to meet the increasing demands on catalytic performance and lifetime. Therefore, numerous studies have been dedicated to the improvement of NH3-SCR performance for Cu-SSZ-13 catalyst. In this review, the recent progress in NH3-SCR performance optimization of Cu-SSZ-13 catalysts is summarized following three aspects: 1) modifying the Cu active sites; 2) introducing the heteroatoms or metal oxides; 3) regulating the morphology. Meanwhile, future perspectives and opportunities of Cu-SSZ-13 catalysts in reducing diesel engine NO x emissions are discussed.
Collapse
Affiliation(s)
- Pan Li
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Ying Xin
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Hanxue Zhang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Fuzhen Yang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Ahui Tang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Dongxu Han
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Junxiu Jia
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Zhenguo Li
- National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center Co., Ltd., Tianjin, China
| | - Zhaoliang Zhang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| |
Collapse
|
2
|
Structural analysis of Cu/Zeolite with controlled Si/Al ratio and the resulting thermal stability. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Liu Y, Zuo J, Li Z, Li J, Zou X, Yang X, Yang B, Zhang C, Wang H, Pui DYH, Yang RT. Separation of SO 2 and NO 2 with the Zeolite Membrane: Molecular Simulation Insights into the Advantageous NO 2 Dimerization Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2751-2762. [PMID: 35192347 DOI: 10.1021/acs.langmuir.1c02290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
NO2 and SO2, as valuable chemical feedstock, are worth being recycled from flue gases. The separation of NO2 and SO2 is a key process step to enable practical deployment. This work proposes SO2 separation from NO2 using chabazite zeolite (SSZ-13) membranes and provides insights into the feasibility and advantages of this process using molecular simulation. Grand canonical ensemble Monte Carlo and equilibrium molecular dynamics methods were respectively adopted to simulate the adsorption equilibria and diffusion of SO2, NO2, and N2O4 on SSZ-13 at varying Si/Al (1, 5, 11, 71, +∞), temperatures (248-348 K), and pressures (0-100 kPa). The adsorption capacity and affinity (SO2 > N2O4 > NO2) demonstrated strong competitive adsorption of SO2 based on dual-site interactions and significant reduction in NO2 adsorption due to dimerization in the ternary gas mixture. The simulated order of diffusivity (NO2 > SO2 > N2O4) on SSZ-13 demonstrated rapid transport of NO2, strong temperature dependence of SO2 diffusion, and the impermeability of SSZ-13 to N2O4. The membrane permeability of each component was simulated, rendering a SO2/NO2 membrane separation factor of 26.34 which is much higher than adsorption equilibrium (6.9) and kinetic (2.2) counterparts. The key role of NO2-N2O4 dimerization in molecular sieving of SO2 from NO2 was addressed, providing a facile membrane separation strategy at room temperature.
Collapse
Affiliation(s)
- Yingshu Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Jiayu Zuo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Ziyi Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Jun Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Xiaoqin Zou
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Xiong Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Bentao Yang
- Zhongye Changtian International Engineering Co., Ltd., Changsha 410205, PR China
| | - Chuanzhao Zhang
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, PR China
| | - Haoyu Wang
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, PR China
| | - David Y H Pui
- Mechanical Engineering, University of Minnesota, 111 Church Street, S.E., Minneapolis, Minnesota 55455, United States
| | - Ralph T Yang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| |
Collapse
|
4
|
Shan Y, Du J, Zhang Y, Shan W, Shi X, Yu Y, Zhang R, Meng X, Xiao FS, He H. Selective catalytic reduction of NO x with NH 3: opportunities and challenges of Cu-based small-pore zeolites. Natl Sci Rev 2021; 8:nwab010. [PMID: 34858603 PMCID: PMC8566184 DOI: 10.1093/nsr/nwab010] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Zeolites, as efficient and stable catalysts, are widely used in the environmental catalysis field. Typically, Cu-SSZ-13 with small-pore structure shows excellent catalytic activity for selective catalytic reduction of NO x with ammonia (NH3-SCR) as well as high hydrothermal stability. This review summarizes major advances in Cu-SSZ-13 applied to the NH3-SCR reaction, including the state of copper species, standard and fast SCR reaction mechanism, hydrothermal deactivation mechanism, poisoning resistance and synthetic methodology. The review gives a valuable summary of new insights into the matching between SCR catalyst design principles and the characteristics of Cu2+-exchanged zeolitic catalysts, highlighting the significant opportunity presented by zeolite-based catalysts. Principles for designing zeolites with excellent NH3-SCR performance and hydrothermal stability are proposed. On the basis of these principles, more hydrothermally stable Cu-AEI and Cu-LTA zeolites are elaborated as well as other alternative zeolites applied to NH3-SCR. Finally, we call attention to the challenges facing Cu-based small-pore zeolites that still need to be addressed.
Collapse
Affiliation(s)
- Yulong Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinpeng Du
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yan Zhang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wenpo Shan
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaoyan Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunbo Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Runduo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiangju Meng
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310007, China
| | - Feng-Shou Xiao
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310007, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
5
|
Numerical Investigation on the Intraphase and Interphase Mass Transfer Limitations for NH3-SCR over Cu-ZSM-5. Processes (Basel) 2021. [DOI: 10.3390/pr9111966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A systematic modeling approach was scrutinized to develop a kinetic model and a novel monolith channel geometry was designed for NH3 selective catalytic reduction (NH3-SCR) over Cu-ZSM-5. The redox characteristic of Cu-based catalysts and the variations of NH3, NOx concentration, and NOx conversion along the axis in porous media channels were studied. The relative pressure drop in different channels, the variations of NH3 and NOx conversion efficiency were analyzed. The model mainly considers NH3 adsorption and desorption, NH3 oxidation, NO oxidation, and NOx reduction. The results showed that the model could accurately predict the NH3-SCR reaction. In addition, it was found that the Cu-based zeolite catalyst had poor low-temperature catalytic performance and good high-temperature activity. Moreover, the catalytic reaction of NH3-SCR was mainly concentrated in the upper part of the reactor. In addition, the hexagonal channel could effectively improve the diffusion rate of gas reactants to the catalyst wall, reduce the pressure drop and improve the catalytic conversion efficiencies of NH3 and NOx.
Collapse
|
6
|
Tian H, Ping Y, Zhang Y, Zhang Z, Sun L, Liu P, Zhu J, Yang X. Atomic layer deposition of silica to improve the high-temperature hydrothermal stability of Cu-SSZ-13 for NH 3 SCR of NO x. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126194. [PMID: 34492958 DOI: 10.1016/j.jhazmat.2021.126194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
The improvement of stability is a crucial and challenging issue for industrial catalyst, which affects not only the service time but also the cost of catalyst. This is especially prominent for that applied in harsh environment atmospheres, such as the exhaust of diesel vehicles. Herein, we reported a new strategy to improve the high-temperature hydrothermal stability of Cu-SSZ-13, which is a promising catalyst for the treatment of exhaust emitted from diesel vehicles through the NH3-SCR NOx route. Different from that reported in literature, we managed to improve the high-temperature hydrothermal stability of Cu-SSZ-13 by coating the surface with a nanolayer of stable SiO2 material using the atomic layer deposition (ALD) method. The coating of SiO2 layers effectively suppressed the leaching of alumina from the SSZ-13 molecular sieve even after the hydrothermal aging at 800 °C for 16 h with 12.5% water in air. Meanwhile, the ultra-thin SiO2 nanolayer does not block the pores of zeolites and affect the catalytic activity of Cu-SSZ-13 contribute to the superiority of the ALD technology.
Collapse
Affiliation(s)
- Heyuan Tian
- State Key Laboratory of Rare Earth Resource Utilization, Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yuan Ping
- SPIC Yuanda Environmental Protection Catalyst Co., Ltd, Chongqing 401336, China
| | - Yibo Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Jiangxi 341000, China.
| | - Zeshu Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Liwei Sun
- State Key Laboratory of Rare Earth Resource Utilization, Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Peng Liu
- State Key Laboratory of Rare Earth Resource Utilization, Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Junjiang Zhu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, Hubei, China.
| | - Xiangguang Yang
- State Key Laboratory of Rare Earth Resource Utilization, Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; University of Science and Technology of China, Hefei 230026, Anhui, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Jiangxi 341000, China.
| |
Collapse
|