1
|
Iqbal S, Karim MR, Mohammad S, Mathiyalagan R, Morshed MN, Yang DC, Bae H, Rupa EJ, Yang DU. Multiomics Analysis of the PHLDA Gene Family in Different Cancers and Their Clinical Prognostic Value. Curr Issues Mol Biol 2024; 46:5488-5510. [PMID: 38921000 PMCID: PMC11201736 DOI: 10.3390/cimb46060328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
The PHLDA (pleckstrin homology-like domain family) gene family is popularly known as a potential biomarker for cancer identification, and members of the PHLDA family have become considered potentially viable targets for cancer treatments. The PHLDA gene family consists of PHLDA1, PHLDA2, and PHLDA3. The predictive significance of PHLDA genes in cancer remains unclear. To determine the role of pleckstrin as a prognostic biomarker in human cancers, we conducted a systematic multiomics investigation. Through various survival analyses, pleckstrin expression was evaluated, and their predictive significance in human tumors was discovered using a variety of online platforms. By analyzing the protein-protein interactions, we also chose a collection of well-known functional protein partners for pleckstrin. Investigations were also carried out on the relationship between pleckstrins and other cancers regarding mutations and copy number alterations. The cumulative impact of pleckstrin and their associated genes on various cancers, Gene Ontology (GO), and pathway analyses were used for their evaluation. Thus, the expression profiles of PHLDA family members and their prognosis in various cancers may be revealed by this study. During this multiomics analysis, we found that among the PHLDA family, PHLDA1 may be a therapeutic target for several cancers, including kidney, colon, and brain cancer, while PHLDA2 can be a therapeutic target for cancers of the colon, esophagus, and pancreas. Additionally, PHLDA3 may be a useful therapeutic target for ovarian, renal, and gastric cancer.
Collapse
Affiliation(s)
- Safia Iqbal
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.I.); (M.R.K.); (M.N.M.); (D.-C.Y.)
| | - Md. Rezaul Karim
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.I.); (M.R.K.); (M.N.M.); (D.-C.Y.)
| | - Shahnawaz Mohammad
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.M.); (R.M.)
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.M.); (R.M.)
| | - Md. Niaj Morshed
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.I.); (M.R.K.); (M.N.M.); (D.-C.Y.)
| | - Deok-Chun Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.I.); (M.R.K.); (M.N.M.); (D.-C.Y.)
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea;
| | - Hyocheol Bae
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea;
| | - Esrat Jahan Rupa
- College of Korean Medicine, Woosuk University, Wanju-gun 55338, Jeollabuk-do, Republic of Korea
| | - Dong Uk Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.I.); (M.R.K.); (M.N.M.); (D.-C.Y.)
| |
Collapse
|
2
|
Gao J, Deng Q, Yu J, Wang C, Wei W. Role of renal tubular epithelial cells and macrophages in cisplatin-induced acute renal injury. Life Sci 2024; 339:122450. [PMID: 38262575 DOI: 10.1016/j.lfs.2024.122450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/30/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a sudden and continuous decline in renal function. The drug cisplatin is commonly used as chemotherapy for solid tumors, and cisplatin-induced acute kidney injury (CI-AKI), which is characterized by acute tubular necrosis and inflammation, frequently occurs in tumor patients. Renal tubular epithelial cells (RTECs) are severely damaged early in this process and play an important role in renal tubular injury and the recruitment of immune cells. Macrophages are the most common infiltrating immune cells in the kidney and have a significant impact on CI-AKI and subsequent repair. This article reviews the latest research progress on the effects of RTECs and macrophages on CI-AKI and their interactions in AKI to provide a direction for identifying therapeutic targets for treating AKI.
Collapse
Affiliation(s)
- Jinzhang Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China
| | - Qinxiang Deng
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Third Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Jun Yu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China
| | - Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
Wang P, Huang Y, Xia X, Han J, Zhang L, Zhao W. Pleckstrin homology-like domain family A, member 3, a miR-19a-3p-regulated gene, suppresses tumor growth in osteosarcoma by downregulating the Akt pathway. Bioengineered 2022; 13:3993-4009. [PMID: 35112982 PMCID: PMC8974154 DOI: 10.1080/21655979.2022.2031404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Pleckstrin homology-like domain family A, member 3 (PHLDA3), is emerging as a critical regulator for multiple cancers. Nevertheless, the expression and role of PHLDA3 in osteosarcoma remain unknown. Herein, we purposed to elucidate the role of PHLDA3 in the progression and chemoresistance of osteosarcoma. According to the bioinformatics analysis, PHLDA3 expression was low in osteosarcoma patients, and low content was linked to poor prognosis. Additionally, activation of PHLDA3 suppressed osteosarcoma cell proliferation, migration, and chemoresistance, whereas PHLDA3 inhibition caused the opposite effects. Mechanistically, our data revealed that PHLDA3 negatively regulates the Akt/GSK3β signaling cascade in osteosarcoma. Furthermore, we found that miR-19a-3p might exert its oncogenic function by inhibiting PHLDA3 expression in osteosarcoma. These results demonstrated miR-19a-3p/ PHLDA3/ Akt/GSK3β axis has a pivotal role in osteosarcoma, and PHLDA3 is a prospective therapeutic target for treating osteosarcoma.
Collapse
Affiliation(s)
- Peng Wang
- Department of Orthopedics, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yu Huang
- Department of Orthopedics, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xin Xia
- Department of Orthopedics, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jian Han
- Department of Orthopedic Surgery, The Third People's Hospital of Dalian, Non-directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lu Zhang
- Department of Orthopedics, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wenzhi Zhao
- Department of Orthopedics, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Meng X, Zhang L, Han B, Zhang Z. PHLDA3 inhibition protects against myocardial ischemia/reperfusion injury by alleviating oxidative stress and inflammatory response via the Akt/Nrf2 axis. ENVIRONMENTAL TOXICOLOGY 2021; 36:2266-2277. [PMID: 34351043 DOI: 10.1002/tox.23340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/30/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Pleckstrin homology-like domain family A, member 3 (PHLDA3) has a particularly critical role in regulating cell survival under stress conditions. However, whether PHLDA3 plays a role in myocardial ischemia/reperfusion injury has not been studied. We aimed to assess the possible role of PHLDA3 in myocardial ischemia/reperfusion (I/R) injury. PHLDA3 expression was increased in myocardial tissue from rats with myocardial I/R injury and rat cardiomyocytes with hypoxia/reoxygenation (H/R) injury. PHLDA3 knockdown protected against myocardial I/R injury in vivo and H/R injury in vitro. Inhibition of PHLDA3 increased the activation of nuclear factor erythroid-derived 2-related factor 2 (Nrf2) associated with regulation of the Akt/glycogen synthase kinase-3β (GSK-3β) axis. Repression of Nrf2 reversed PHLDA3-inhibition-mediated cardioprotective effects. Taken together, our work demonstrates that PHLDA3 inhibition exerts a protective role in myocardial I/R injury via regulation of the Akt/GSK-3β/Nrf2 axis. We suggest PHLDA3 as an attractive target for developing treatments against myocardial I/R injury.
Collapse
Affiliation(s)
- Xiaoxue Meng
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Lu Zhang
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Bing Han
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zheng Zhang
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Lei L, Wang Y, Li ZH, Fei LR, Huang WJ, Zheng YW, Liu CC, Yang MQ, Wang Z, Zou ZF, Xu HT. PHLDA3 promotes lung adenocarcinoma cell proliferation and invasion via activation of the Wnt signaling pathway. J Transl Med 2021; 101:1130-1141. [PMID: 34006890 DOI: 10.1038/s41374-021-00608-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/05/2023] Open
Abstract
The PHLDA3 gene encodes a small 127 amino acid protein with a pleckstrin homology (PH)-only domain. The expression and significance of PHLDA3 in lung cancer remain unclear. Here, we investigated the role of PHLDA3 in tumor proliferation and invasion in lung adenocarcinoma. Immunohistochemistry and immunoblotting analyses were used to assess PHLDA3 expression in lung cancer tissues, and its correlation with clinicopathological factors in lung cancer. Plasmids encoding PHLDA3 and small interfering RNA against PHLDA3 were used to regulate the expression of PHLDA3 in lung cancer cells. Furthermore, the effects of PHLDA3 on lung cancer cell proliferation and invasion were investigated using the MTS, colony formation, Matrigel invasion, and wound healing assays. Co-immunoprecipitation analysis and inhibitors of both the Wnt signaling pathway and GSK3β were used to explore the regulatory mechanisms underlying the role of PHLDA3 in lung cancer cells. PHLDA3 was found to be overexpressed in lung cancer tissues, and its expression was correlated with poor outcomes in lung adenocarcinoma patients. PHLDA3 expression promoted the proliferation, invasion, and migration of lung cancer cells. Overexpression of PHLDA3 activated the Wnt signaling pathway and facilitated epithelial-mesenchymal transition. Inhibition of Wnt signaling pathway activity, using XAV-939, reversed the effects of PHLDA3 overexpression in lung cancer cells; moreover, PHLDA3 could bind to GSK3β. Inhibition of GSK3β activity, using CHIR-99021, restored the proliferative and invasive abilities of PHLDA3 knockdown cells. Our findings demonstrate that PHLDA3 is highly expressed in lung adenocarcinomas and is correlated with poor outcomes. Furthermore, it promotes the proliferation and invasion of lung cancer cells by activating the Wnt signaling pathway.
Collapse
Affiliation(s)
- Lei Lei
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yuan Wang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
- Department of Pathology, Jinzhou Medical University, Jinzhou, China
| | - Zhi-Han Li
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Liang-Ru Fei
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Wen-Jing Huang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
- Department of Pathology, The Fourth People's Hospital of Shenyang, Shenyang, China
| | - Yi-Wen Zheng
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Chen-Chen Liu
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Mai-Qing Yang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
- Department of Pathology, Changyi People's Hospital, Changyi, China
| | - Zhao Wang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
- Department of Pathology, General Hospital of Heilongjiang Land Reclamation Bureau, Harbin, China
| | - Zi-Fang Zou
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Hong-Tao Xu
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Liu K, Chen Y, Ai F, Li YQ, Zhang K, Zhang WT. PHLDA3 inhibition attenuates endoplasmic reticulum stress-induced apoptosis in myocardial hypoxia/reoxygenation injury by activating the PI3K/AKT signaling pathway. Exp Ther Med 2021; 21:613. [PMID: 33936270 PMCID: PMC8082641 DOI: 10.3892/etm.2021.10045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum stress (ERS)-induced apoptosis serves a crucial role in the pathogenesis of myocardial ischemia/reperfusion injury (MIRI). Previous studies have confirmed that pleckstrin homology-like domain family A member 3 (PHLDA3) is an important mediator in ERS-associated apoptosis. The aim of the current study focused on whether PHLDA3 served protective effects on hypoxia/reoxygenation (H/R)-injured cardiomyocytes by inhibiting ERS-induced apoptosis. Furthermore, the molecular mechanisms associated with the PI3K/AKT signaling pathway were investigated. Primary neonatal rat cardiomyocytes were isolated and randomized into four groups: i) Control + adenovirus encoding scrambled short hairpin RNA (AdshRNA); ii) control + adenoviral vectors encoding PHLDA3 shRNA (AdshPHLDA3); iii) H/R+ AdshRNA and iv) H/R+AdshPHLDA3. AdshPHLDA3 was used to knock down PHLDA3. An H/R injury model was constructed by treatment with hypoxia for 4 h followed by reoxygenation for 6 h. A PI3K/AKT inhibitor, LY294002, was supplemented in mechanistic studies. Cell viability and LDH/CK releases were detected to evaluate myocardial damage. Flow cytometry assays were used to assess apoptotic response. Western blotting assays were used to detect protein expression. The results demonstrated that H/R induced myocardial damage and increased PHLDA3 expression. ERS-induced apoptosis was significantly increased following H/R injury, as indicated by increased apoptotic rates and ERS-associated protein expression, including those of CHOP, 78 kDa glucose-regulated protein and caspase-12. However, PHLDA3 inhibition following AdshPHLDA3 transfection reversed cell damage and ERS-associated apoptosis on H/R injury. Studies for molecular mechanisms concluded that the apoptosis-inhibition effects and cardioprotective roles of PHLDA3 inhibition were induced partly by the activation of the PI3K/AKT pathway, which was verified by LY294002 treatment. In conclusion, in the process of H/R injury, PHLDA3 inhibition reduced ERS-induced apoptosis and H/R injury by activating the PI3K/AKT pathway. PHLDA3 may be a therapeutic target for the treatment of MIRI.
Collapse
Affiliation(s)
- Kai Liu
- Department of Geriatric Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Ying Chen
- Department of Geriatric Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Fen Ai
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Yun-Qian Li
- Department of Geriatric Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Kun Zhang
- Department of Geriatric Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Wei-Tong Zhang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| |
Collapse
|
7
|
Signaling Nodes Associated with Endoplasmic Reticulum Stress during NAFLD Progression. Biomolecules 2021; 11:biom11020242. [PMID: 33567666 PMCID: PMC7915814 DOI: 10.3390/biom11020242] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/19/2022] Open
Abstract
Excess and sustained endoplasmic reticulum (ER) stress, paired with a failure of initial adaptive responses, acts as a critical trigger of nonalcoholic fatty liver disease (NAFLD) progression. Unfortunately, there is no drug currently approved for treatment, and the molecular basis of pathogenesis by ER stress remains poorly understood. Classical ER stress pathway molecules have distinct but inter-connected functions and complicated effects at each phase of the disease. Identification of the specific molecular signal mediators of the ER stress-mediated pathogenesis is, therefore, a crucial step in the development of new treatments. These signaling nodes may be specific to the cell type and/or the phase of disease progression. In this review, we highlight the recent advancements in knowledge concerning signaling nodes associated with ER stress and NAFLD progression in various types of liver cells.
Collapse
|
8
|
Jin X, An C, Jiao B, Safirstein RL, Wang Y. AMP-activated protein kinase contributes to cisplatin-induced renal epithelial cell apoptosis and acute kidney injury. Am J Physiol Renal Physiol 2020; 319:F1073-F1080. [PMID: 33103444 DOI: 10.1152/ajprenal.00354.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cisplatin, a commonly used anticancer drug, has been shown to induce acute kidney injury, which limits its clinical use in cancer treatment. Emerging evidence has suggested that AMP-activated protein kinase (AMPK), which functions as a cellular energy sensor, is activated by various cellular stresses that deplete cellular ATP. However, the potential role of AMPK in cisplatin-induced apoptosis of renal tubular epithelial cells has not been studied. In this study, we demonstrated that cisplatin activates AMPK (Thr172 phosphorylation) in cultured renal tubular epithelial cells in a time-dependent manner, which was associated with p53 phosphorylation. Compound C, a selective AMPK inhibitor, suppressed cisplatin-induced AMPK activation, p53 phosphorylation, Bax induction, and caspase 3 activation. Furthermore, silencing AMPK expression by siRNA attenuated cisplatin-induced p53 phosphorylation, Bax induction, and caspase 3 activation. In a mouse model of cisplatin-induced kidney injury, compound C inhibited p53 phosphorylation, Bax expression, caspase 3 activation, and apoptosis, protecting the kidney from injury and dysfunction. Taken together, these results suggest that the AMPK-p53-Bax signaling pathway plays a crucial role in cisplatin-induced tubular epithelial cell apoptosis.
Collapse
Affiliation(s)
- Xiaogao Jin
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Anesthesiology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Changlong An
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Baihai Jiao
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Robert L Safirstein
- Renal Section, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Yanlin Wang
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut.,Renal Section, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut.,Department of Cell Biology, University of Connecticut School of Medicine, Farmington, Connecticut.,Institute for Systems Genomics, University of Connecticut School of Medicine, Farmington, Connecticut
| |
Collapse
|
9
|
Liu J, Liu X, Hui X, Cai L, Li X, Yang Y, Shu S, Wang F, Xia H, Li S. Novel Role for Pleckstrin Homology-Like Domain Family A, Member 3 in the Regulation of Pathological Cardiac Hypertrophy. J Am Heart Assoc 2019; 8:e011830. [PMID: 31426686 PMCID: PMC6759890 DOI: 10.1161/jaha.118.011830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Pleckstrin homology-like domain family A, member 3 (PHLDA3), a crucial member of the PHLDA family, is involved in tumor suppression, kidney injury, liver injury, and glucose metabolism. However, the role of PHLDA3 in pathological cardiac hypertrophy and heart failure remains unclear. Methods and Results In the present study, PHLDA3 expression was downregulated in hypertrophic murine hearts and angiotensin II-treated cardiomyocytes. Next, an in vitro study suggested, by using gain- and loss-of-function approaches, that PHLDA3 attenuates Ang II exposure-induced cardiomyocyte hypertrophy. Consistent with the cell phenotype, disruption of PHLDA3 aggravated the effects of pressure overload-induced pathological cardiac hypertrophy, fibrosis, and dysfunction. In contrast, PHLDA3 overexpression resulted in an attenuated hypertrophic phenotype. Molecular analysis revealed that PHLDA3 suppressed the activation of AKT-mTOR-GSK3β-P70S6K signaling in response to hypertrophic stress, and the blockage of AKT activation rescued these adverse pathological effects of PHLDA3 deficiency-induced by AB and Ang II, respectively, in vivo and in vitro. Conclusions Collectively, our data indicated that PHLDA3 could ameliorate pressure overload-induced cardiac remodeling mainly by blocking the AKT signaling pathway, suggesting that PHLDA3 may represent a therapeutic target for the treatment of pathological cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Jia Liu
- Department of Cardiology First Hospital of Jilin University Changchun Jilin China.,Department of Cardiology Cang Zhou People's Hospital Cangzhou Hebei China
| | - Xiaoxiong Liu
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China.,Cardiovascular Research Institute Wuhan University Wuhan China.,Hubei Key Laboratory of Cardiology Wuhan China
| | - Xuejun Hui
- Department of Cardiology Second Hospital of Jilin University Changchun Jilin China
| | - Lin Cai
- Zhongnan Hospital of Wuhan University Wuhan China.,Institute of Model Animal of Wuhan University Wuhan China
| | - Xuebo Li
- Department of Cardiology First Hospital of Jilin University Changchun Jilin China
| | - Yang Yang
- Department of Cardiology First Hospital of Jilin University Changchun Jilin China
| | - Shangzhi Shu
- Department of Cardiology First Hospital of Jilin University Changchun Jilin China
| | - Fan Wang
- Department of Cardiology First Hospital of Jilin University Changchun Jilin China
| | - Hao Xia
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China.,Cardiovascular Research Institute Wuhan University Wuhan China.,Hubei Key Laboratory of Cardiology Wuhan China
| | - Shuyan Li
- Department of Cardiology First Hospital of Jilin University Changchun Jilin China
| |
Collapse
|
10
|
Ma W, Li J, Hu J, Cheng Y, Wang J, Zhang X, Xu M. miR214-regulated p53-NOX4/p66shc pathway plays a crucial role in the protective effect of Ginkgolide B against cisplatin-induced cytotoxicity in HEI-OC1 cells. Chem Biol Interact 2016; 245:72-81. [DOI: 10.1016/j.cbi.2016.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 12/14/2015] [Accepted: 01/04/2016] [Indexed: 12/15/2022]
|