1
|
Calabretta MM, Michelini E. Current advances in the use of bioluminescence assays for drug discovery: an update of the last ten years. Expert Opin Drug Discov 2024; 19:85-95. [PMID: 37814480 DOI: 10.1080/17460441.2023.2266989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
INTRODUCTION Bioluminescence is a well-established optical detection technique widely used in several bioanalytical applications, including high-throughput and high-content screenings. Thanks to advances in synthetic biology techniques and deep learning, a wide portfolio of luciferases is now available with tuned emission wavelengths, kinetics, and high stability. These luciferases can be implemented in the drug discovery and development pipeline, allowing high sensitivity and multiplexing capability. AREAS COVERED This review summarizes the latest advancements of bioluminescent systems as toolsets in drug discovery programs for in vitro applications. Particular attention is paid to the most advanced bioluminescence-based technologies for drug screening over the past 10 years (from 2013 to 2023) such as cell-free assays, cell-based assays based on genetically modified cells, bioluminescence resonance energy transfer, and protein complementation assays in 2D and 3D cell models. EXPERT OPINION The availability of tuned bioluminescent proteins with improved emission and stability properties is vital for the development of bioluminescence assays for drug discovery, spanning from reporter gene technology to protein-protein techniques. Further studies, combining machine learning with synthetic biology, will be necessary to obtain new tools for sustainable and highly predictive bioluminescent drug discovery platforms.
Collapse
Affiliation(s)
- Maria Maddalena Calabretta
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Center for Applied Biomedical Research (CRBA), IRCCS St. Orsola Hospital, Bologna, Italy
| | - Elisa Michelini
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Center for Applied Biomedical Research (CRBA), IRCCS St. Orsola Hospital, Bologna, Italy
- Health Sciences and Technologies Interdepartmental Center for Industrial Research (HSTICIR), University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Mora-Garduño JD, Tamayo-Nuñez J, Padilla-Vaca F, Ramírez-Montiel FB, Rangel-Serrano Á, Santos-Escobar F, Gutiérrez-Corona F, Páramo-Pérez I, Anaya-Velázquez F, García-Contreras R, Vargas-Maya NI, Franco B. Chromogenic Escherichia coli reporter strain for screening DNA damaging agents. AMB Express 2022; 12:2. [PMID: 34989906 PMCID: PMC8739417 DOI: 10.1186/s13568-021-01342-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
The presence of pollutants in soil and water has given rise to diverse analytical and biological approaches to detect and measure contaminants in the environment. Using bacterial cells as reporter strains represents an advantage for detecting pollutants present in soil or water samples. Here, an Escherichia coli reporter strain expressing a chromoprotein capable of interacting with soil or water samples and responding to DNA damaging compounds is validated. The reporter strain generates a qualitative signal and is based on the expression of the coral chromoprotein AmilCP under the control of the recA promoter. This strain can be used simply by applying soil or water samples directly and rendering activation upon DNA damage. This reporter strain responds to agents that damage DNA (with an apparent detection limit of 1 µg of mitomycin C) without observable response to membrane integrity damage, protein folding or oxidative stress generating agents, in the latter case, DNA damage was observed. The developed reporter strain reported here is effective for the detection of DNA damaging agents present in soils samples. In a proof-of-concept analysis using soil containing chromium, showing activation at 15.56 mg/L of Cr(VI) present in soil and leached samples and is consistent with Cr(III) toxicity at high concentrations (130 µg). Our findings suggest that chromogenic reporter strains can be applied for simple screening, thus reducing the number of samples requiring analytical techniques.
Collapse
|
3
|
Detection of biotin with zeptomole sensitivity using recombinant spores and a competition assay. Anal Bioanal Chem 2020; 412:7219-7226. [PMID: 32761258 DOI: 10.1007/s00216-020-02854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
Detection of protein-binding analytes is important for many applications. Currently, various instrument-based techniques are used for detecting protein-binding analytes. However, such techniques have several limitations including high cost and time-consuming sample processing. In order to overcome these limitations, we developed a sensitive competition assay for the detection of protein-binding analytes using recombinant endospores as a sensing element. The method is based on the competition between the biotin, the model analyte, and a biotin-magnetic bead complex to bind the recombinant spores containing the biotin binding region of streptavidin. After magnetic attraction, the residual spores in the suspension are spread on plates to form colonies which are used to count the amount of the residual spores; the higher the residual ratio of spores, the more biotin in the samples. The linear range was from 150 zmol to 1.5 fmol and the limit of detection of the assay was 150 zmol. The assay proposed herein is sensitive and does not require any expensive equipment. It is suitable for qualitative or semi-quantitative analysis such as screening tests for the detection of toxic chemicals.
Collapse
|
4
|
Johann S, Goßen M, Behnisch PA, Hollert H, Seiler TB. Combining Different In Vitro Bioassays to Evaluate Genotoxicity of Water-Accommodated Fractions from Petroleum Products. TOXICS 2020; 8:toxics8020045. [PMID: 32604793 PMCID: PMC7355774 DOI: 10.3390/toxics8020045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/08/2020] [Accepted: 06/20/2020] [Indexed: 12/18/2022]
Abstract
Genotoxicity assessment is of high relevance for crude and refined petroleum products, since oil compounds are known to cause DNA damage with severe consequences for aquatic biota as demonstrated in long-term monitoring studies. This study aimed at the optimization and evaluation of small-scale higher-throughput assays (Ames fluctuation, micronucleus, Nrf2-CALUX®) covering different mechanistic endpoints as first screening tools for genotoxicity assessment of oils. Cells were exposed to native and chemically dispersed water-accommodated fractions (WAFs) of three oil types varying in their processing degree. Independent of an exogenous metabolic activation system, WAF compounds induced neither base exchange nor frame shift mutations in bacterial strains. However, significantly increased chromosomal aberrations in zebrafish liver (ZF-L) cells were observed. Oxidative stress was indicated for some treatments and was not correlated with observed DNA damage. Application of a chemical dispersant increased the genotoxic potential rather by the increased bioavailability of dissolved and particulate oil compounds. Nonetheless, the dispersant induced a clear oxidative stress response, indicating a relevance for general toxic stress. Results showed that the combination of different in vitro assays is important for a reliable genotoxicity assessment. Especially, the ZF-L capable of active metabolism and DNA repair seems to be a promising model for WAF testing.
Collapse
Affiliation(s)
- Sarah Johann
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; (M.G.); (H.H.)
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Correspondence: (S.J.); (T.-B.S.)
| | - Mira Goßen
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; (M.G.); (H.H.)
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Peter A. Behnisch
- BioDetection Systems b.v., Science Park 406, 1098 XH Amsterdam, The Netherlands;
| | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; (M.G.); (H.H.)
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Thomas-Benjamin Seiler
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Correspondence: (S.J.); (T.-B.S.)
| |
Collapse
|
5
|
Zhang Y, Wu WJ, Zhou WE, Ren ZQ, Feng XS, Zhang F. Determination of 14 heterocyclic aromatic amines in meat products using solid-phase extraction and supercritical fluid chromatography coupled to triple quadrupole mass spectrometry. J Sep Sci 2020; 43:1372-1381. [PMID: 31944578 DOI: 10.1002/jssc.201900816] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/19/2019] [Accepted: 12/30/2019] [Indexed: 11/12/2022]
Abstract
A novel, simple, and sensitive method has been developed for simultaneous determination of 14 heterocyclic aromatic amines in meat product using solid-phase extraction combined with ultrahigh-performance supercritical fluid chromatography coupled to tandem quadrupole mass spectrometry. The analytes could be separated within 7 min and identified using their retention times and mass. The developed method was validated based on the linearity, limits of quantification, precision, and accuracy. The recovery ranged from 52.3 to 97.5% with an acceptable standard deviation, which is not higher than 6%. The limits of quantitation ranged from 0.03 to 0.17 µg/kg. The selectivity and sensitivity were satisfactory in multiple reaction monitoring mode. The method was applied to commercial meat products, and the results demonstrated that the novel method has potential for the analysis of the targets in food matrices. This is the first work reporting the simultaneous quantification of 14 heterocyclic aromatic amines by means of ultrahigh-performance supercritical fluid chromatography coupled to tandem quadrupole mass spectrometry.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, P.R. China.,Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Wen-Jie Wu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, P.R. China.,School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, P.R. China
| | - Wei-E Zhou
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, P.R. China
| | - Zhi-Qin Ren
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, P.R. China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, P.R. China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, P.R. China
| |
Collapse
|
6
|
Lv J, Bhatia M, Wang X. Roles of Mitochondrial DNA in Energy Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1038:71-83. [PMID: 29178070 DOI: 10.1007/978-981-10-6674-0_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Mitochondria are independent double-membrane organelles responsible for energy production, specifically by completing oxidative phosphorylation. Mitochondria are essential to regulate energy metabolism, signaling pathways, and cell death. Mitochondrial DNA (mtDNA) can be altered by metabolic disorders, oxidative stress, or inflammation in the progression and development of various diseases. In this chapter, we overview the role of mtDNA in energy metabolism and the diseases that are associated with mtDNA abnormality, with a special focus on the major factors which regulate the mechanism of mtDNA in metabolism.
Collapse
Affiliation(s)
- Jiapei Lv
- Zhongshan Hospital Institute of Fudan University, Shanghai Medical School, Shanghai, China
| | - Madhav Bhatia
- Department of Pathology, University of Otago, Wellington, New Zealand
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China.
| |
Collapse
|
7
|
Wang W, Gao D, Wang X. Can single-cell RNA sequencing crack the mystery of cells? Cell Biol Toxicol 2017; 34:1-6. [DOI: 10.1007/s10565-017-9404-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/28/2017] [Indexed: 12/15/2022]
|