1
|
Matsuzaki S, Sakuma T, Yamamoto T. REMOVER-PITCh: microhomology-assisted long-range gene replacement with highly multiplexed CRISPR-Cas9. In Vitro Cell Dev Biol Anim 2024; 60:697-707. [PMID: 38334880 PMCID: PMC11297102 DOI: 10.1007/s11626-024-00850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/02/2024] [Indexed: 02/10/2024]
Abstract
A variety of CRISPR-Cas9-based gene editing technologies have been developed, including gene insertion and gene replacement, and applied to the study and treatment of diseases. While numerous studies have been conducted to improve the efficiency of gene insertion and to expand the system in various ways, there have been relatively few reports on gene replacement technology; therefore, further improvements are still needed in this context. Here, we developed the REMOVER-PITCh system to establish an efficient long-range gene replacement method and demonstrated its utility at two genomic loci in human cultured cells. REMOVER-PITCh depends on microhomology-assisted gene insertion technology called PITCh with highly multiplexed CRISPR-Cas9. First, we achieved gene replacement of about 20-kb GUSB locus using this system. Second, by applying the previously established knock-in-enhancing platform, the LoAD system, along with REMOVER-PITCh, we achieved the replacement of a longer gene region of about 200 kb at the ARSB locus. Our REMOVER-PITCh system will make it possible to remove and incorporate a variety of sequences from and into the genome, respectively, which will facilitate the generation of various disease and humanized models.
Collapse
Affiliation(s)
- Shu Matsuzaki
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd., 1624 Shimokotachi, Koda-Cho, Akitakata-Shi, Hiroshima, 739-1195, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
2
|
Jiang T, Hu X, Shen J. Establishment of a Novel Detection Platform for Clostridioides difficile Toxin Genes Based on Orthogonal CRISPR. Microbiol Spectr 2023; 11:e0188623. [PMID: 37378559 PMCID: PMC10434169 DOI: 10.1128/spectrum.01886-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Clostridioides difficile is one of the leading pathogens causing nosocomial infection. The infection can range from mild to severe, and rapid identification is pivotal for early clinical diagnosis and appropriate treatment. Here, a genetic testing platform for toxins, referred to as OC-MAB (orthogonal CRISPR system combined with multiple recombinase polymerase amplification [RPA]), was developed to detect the C. difficile toxin genes tcdA and tcdB. While recognizing the amplified products of the tcdA gene and the tcdB gene, Cas13a and Cas12a could activate their cleavage activities to cut labeled RNA and DNA probes, respectively. The cleaved products were subsequently identified by dual-channel fluorescence using a quantitative PCR (qPCR) instrument. Finally, they could also be combined with labeled antibodies on immunochromatographic test strips to achieve visual detection. The OC-MAB platform exhibited ultrahigh sensitivity in detecting the tcdA and tcdB genes at levels of as low as 102 to 101 copies/mL. When testing 72 clinical stool samples, the sensitivity (95% confidence interval [CI], 0.90, 1) and specificity (95% CI, 0.84, 1) of the single-tube method based on the fluorescence readout was 100%, with a positive predictive value (PPA) value of 100% (95% CI, 0.90, 1) and a negative predictive value (NPA) value of 100% (95% CI, 0.84, 1), compared to the results of qPCR. Likewise, the sensitivity of the 2-step method based on the test strip readout was 100% (95% CI, 0.90, 1), while the specificity was 96.3% (95% CI, 0.79, 0.99), with a PPA of 98% (95% CI, 0.87, 0.99) and an NPA of 100% (95% CI, 0.90, 1). In short, orthogonal CRISPR technology is a promising tool for the detection of C. difficile toxin genes. IMPORTANCE C. difficile is currently the primary causative agent of hospital-acquired antibiotic-induced diarrhea, and timely and accurate diagnosis is crucial for hospital-acquired infection control and epidemiological investigation. Here, a new method for the identification of C. difficile was developed based on the recently popular CRISPR technology, and an orthogonal CRISPR dual system was utilized for the simultaneous detection of toxin genes A and B. It also uses a currently rare CRISPR dual-target lateral flow strip with powerful color-changing capabilities, which is appropriate for point-of-care testing (POCT).
Collapse
Affiliation(s)
- Tong Jiang
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Xinyi Hu
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Jilu Shen
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| |
Collapse
|
3
|
Rezazade Bazaz M, Dehghani H. From DNA break repair pathways to CRISPR/Cas-mediated gene knock-in methods. Life Sci 2022; 295:120409. [PMID: 35182556 DOI: 10.1016/j.lfs.2022.120409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
Abstract
Various DNA breaks created via programmable CRISPR/Cas9 nuclease activity results in different intracellular DNA break repair pathways. Based on the cellular repair pathways, CRISPR-based gene knock-in methods can be categorized into two major strategies: 1) Homology-independent strategies which are targeted insertion events based on non-homologous end joining, and 2) Homology-dependent strategies which are targeted insertion events based on the homology-directed repair. This review elaborates on various gene knock-in methods in mammalian cells using the CRISPR/Cas9 system and in sync with DNA-break repair pathways. Gene knock-in methods are applied in functional genomics and gene therapy. To compensate or correct genetic defects, different CRISPR-based gene knock-in strategies can be used. Thus, researchers need to make a conscious decision about the most suitable knock-in method. For a successful gene-targeted insertion, some determinant factors should be considered like cell cycle, dominant DNA repair pathway, size of insertions, and donor properties. In this review, different aspects of each gene knock-in strategy are discussed to provide a framework for choosing the most appropriate gene knock-in method in different applications.
Collapse
Affiliation(s)
- Mahere Rezazade Bazaz
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam Dehghani
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
4
|
Zhang X, Li T, Ou J, Huang J, Liang P. Homology-based repair induced by CRISPR-Cas nucleases in mammalian embryo genome editing. Protein Cell 2021; 13:316-335. [PMID: 33945139 PMCID: PMC9008090 DOI: 10.1007/s13238-021-00838-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/16/2021] [Indexed: 12/26/2022] Open
Abstract
Recent advances in genome editing, especially CRISPR-Cas nucleases, have revolutionized both laboratory research and clinical therapeutics. CRISPR-Cas nucleases, together with the DNA damage repair pathway in cells, enable both genetic diversification by classical non-homologous end joining (c-NHEJ) and precise genome modification by homology-based repair (HBR). Genome editing in zygotes is a convenient way to edit the germline, paving the way for animal disease model generation, as well as human embryo genome editing therapy for some life-threatening and incurable diseases. HBR efficiency is highly dependent on the DNA donor that is utilized as a repair template. Here, we review recent progress in improving CRISPR-Cas nuclease-induced HBR in mammalian embryos by designing a suitable DNA donor. Moreover, we want to provide a guide for producing animal disease models and correcting genetic mutations through CRISPR-Cas nuclease-induced HBR in mammalian embryos. Finally, we discuss recent developments in precise genome-modification technology based on the CRISPR-Cas system.
Collapse
Affiliation(s)
- Xiya Zhang
- Center for Reproductive Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510630, China
| | - Tao Li
- Center for Reproductive Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jianping Ou
- Center for Reproductive Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. .,Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Puping Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. .,Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
5
|
Abstract
Conventional methods of DNA sequence insertion into plants, using Agrobacterium-mediated transformation or microprojectile bombardment, result in the integration of the DNA at random sites in the genome. These plants may exhibit altered agronomic traits as a consequence of disruption or silencing of genes that serve a critical function. Also, genes of interest inserted at random sites are often not expressed at the desired level. For these reasons, targeted DNA insertion at suitable genomic sites in plants is a desirable alternative. In this paper we review approaches of targeted DNA insertion in plant genomes, discuss current technical challenges, and describe promising applications of targeted DNA insertion for crop genetic improvement.
Collapse
|
6
|
Karapurkar JK, Antao AM, Kim KS, Ramakrishna S. CRISPR-Cas9 based genome editing for defective gene correction in humans and other mammals. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:185-229. [PMID: 34127194 DOI: 10.1016/bs.pmbts.2021.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR/Cas9), derived from bacterial and archean immune systems, has received much attention from the scientific community as a powerful, targeted gene editing tool. The CRISPR/Cas9 system enables a simple, relatively effortless and highly specific gene targeting strategy through temporary or permanent genome regulation or editing. This endonuclease has enabled gene correction by taking advantage of the endogenous homology directed repair (HDR) pathway to successfully target and correct disease-causing gene mutations. Numerous studies using CRISPR support the promise of efficient and simple genome manipulation, and the technique has been validated in in vivo and in vitro experiments, indicating its potential for efficient gene correction at any genomic loci. In this chapter, we detailed various strategies related to gene editing using the CRISPR/Cas9 system. We also outlined strategies to improve the efficiency of gene correction via the HDR pathway and to improve viral and non-viral mediated gene delivery methods, with an emphasis on their therapeutic potential for correcting genetic disorder in humans and other mammals.
Collapse
Affiliation(s)
| | - Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| |
Collapse
|
7
|
Kunii A, Yamamoto T, Sakuma T. Various strategies of effector accumulation to improve the efficiency of genome editing and derivative methodologies. In Vitro Cell Dev Biol Anim 2020; 56:359-366. [PMID: 32514717 DOI: 10.1007/s11626-020-00469-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/21/2020] [Indexed: 12/30/2022]
Abstract
CRISPR-Cas9 is a sophisticated tool in which Cas9/sgRNA complexes bind to the programmed target sequences and induce DNA double-strand breaks (DSBs) enabling highly efficient genome editing. Moreover, when nuclease-inactive Cas9 (dCas9) is employed, its specific DNA-binding activity provides a variety of derivative technologies such as transcriptional activation/repression, epigenome editing, and chromosome visualization. In these derivative technologies, particular effector molecules are fused with dCas9 or recruited to the target site. However, there had been room for improvement, because both genome editing and derivative technologies require not only the DNA-binding tools but also the additional components for their efficient and flexible outcomes. For genome editing, DSB repair molecules and knock-in donor templates need to act at the DSB sites. Derivative technologies also require their various effector domains to be gathered onto the target sites. Recently, many groups have developed and utilized inventive platforms to accumulate these additional components to the target sequence by modifying Cas9 protein and/or sgRNA. Here, we summarize the strategies of CRISPR-based effector accumulation and the improved methodologies using these creative platforms.
Collapse
Affiliation(s)
- Atsushi Kunii
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
8
|
Shelake RM, Pramanik D, Kim JY. Exploration of Plant-Microbe Interactions for Sustainable Agriculture in CRISPR Era. Microorganisms 2019; 7:E269. [PMID: 31426522 PMCID: PMC6723455 DOI: 10.3390/microorganisms7080269] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022] Open
Abstract
Plants and microbes are co-evolved and interact with each other in nature. Plant-associated microbes, often referred to as plant microbiota, are an integral part of plant life. Depending on the health effects on hosts, plant-microbe (PM) interactions are either beneficial or harmful. The role of microbiota in plant growth promotion (PGP) and protection against various stresses is well known. Recently, our knowledge of community composition of plant microbiome and significant driving factors have significantly improved. So, the use of plant microbiome is a reliable approach for a next green revolution and to meet the global food demand in sustainable and eco-friendly agriculture. An application of the multifaceted PM interactions needs the use of novel tools to know critical genetic and molecular aspects. Recently discovered clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-mediated genome editing (GE) tools are of great interest to explore PM interactions. A systematic understanding of the PM interactions will enable the application of GE tools to enhance the capacity of microbes or plants for agronomic trait improvement. This review focuses on applying GE techniques in plants or associated microbiota for discovering the fundamentals of the PM interactions, disease resistance, PGP activity, and future implications in agriculture.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea.
- Division of Life Science (CK1 Program), Gyeongsang National University, Jinju 660-701, Korea.
| |
Collapse
|
9
|
|
10
|
Wang DC, Wang X. Off-target genome editing: A new discipline of gene science and a new class of medicine. Cell Biol Toxicol 2019; 35:179-183. [DOI: 10.1007/s10565-019-09475-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/18/2019] [Indexed: 12/19/2022]
|
11
|
CRISPR/Cas Systems towards Next-Generation Biosensing. Trends Biotechnol 2019; 37:730-743. [PMID: 30654914 DOI: 10.1016/j.tibtech.2018.12.005] [Citation(s) in RCA: 498] [Impact Index Per Article: 99.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023]
Abstract
Beyond its remarkable genome editing ability, the CRISPR/Cas9 effector has also been utilized in biosensing applications. The recent discovery of the collateral RNA cleavage activity of the Cas13a effector has sparked even greater interest in developing novel biosensing technologies for nucleic acid detection and promised significant advances in CRISPR diagnostics. Now, along with the discovery of Cas12 collateral cleavage activities on single-stranded DNA (ssDNA), several CRISPR/Cas systems have been established for detecting various targets, including bacteria, viruses, cancer mutations, and others. Based on key Cas effectors, we provide a detailed classification of CRISPR/Cas biosensing systems and propose their future utility. As the field continues to mature, CRISPR/Cas systems have the potential to become promising candidates for next-generation diagnostic biosensing platforms.
Collapse
|
12
|
Is Pooled CRISPR-Screening the Dawn of a New Era for Functional Genomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:171-176. [PMID: 29943304 DOI: 10.1007/978-981-13-0502-3_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Functional genomics aims to develop an in-depth understanding of how specific gene dysfunctions are related to diseases. A common method for investigating the genome and its complex functions is via perturbation of the interactions between the DNA, RNA and their protein respective protein derivatives. Commonly, arrayed and pooled genetic screens are utilized to achieve this and in recent years have been fundamental in achieving the current level of understanding for gene dysfunctions. However, they are limited in specific aspects which scientists have attempted to address. Clustered regularly palindromic repeats (CRISPR)-based methods for genetic screens have in recent years become more prevalent but crucially shared similar properties to previous methods and failing to provide a distinct advantage over previous methods. CROP-seq, Perturb-seq, and CRISPR-seq have combined CRISPR and single-cell RNA-sequencing (scRNA-seq) and is the newest addition to the geneticist's arsenal, providing scientists with methods to edit DNA with improved speed, accuracy, and efficiency which could usher us into a new era of study methods for functional genomics. We briefly overview the CRISPR-Cas9 systems, the evolution of genetic screening in recent years, and evaluate and discuss the significance of CROP-seq, Perturb-seq, and CRISPR-seq.
Collapse
|
13
|
WareJoncas Z, Campbell JM, Martínez-Gálvez G, Gendron WAC, Barry MA, Harris PC, Sussman CR, Ekker SC. Precision gene editing technology and applications in nephrology. Nat Rev Nephrol 2018; 14:663-677. [PMID: 30089813 PMCID: PMC6591726 DOI: 10.1038/s41581-018-0047-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The expanding field of precision gene editing is empowering researchers to directly modify DNA. Gene editing is made possible using synonymous technologies: a DNA-binding platform to molecularly locate user-selected genomic sequences and an associated biochemical activity that serves as a functional editor. The advent of accessible DNA-targeting molecular systems, such as zinc-finger nucleases, transcription activator-like effectors (TALEs) and CRISPR-Cas9 gene editing systems, has unlocked the ability to target nearly any DNA sequence with nucleotide-level precision. Progress has also been made in harnessing endogenous DNA repair machineries, such as non-homologous end joining, homology-directed repair and microhomology-mediated end joining, to functionally manipulate genetic sequences. As understanding of how DNA damage results in deletions, insertions and modifications increases, the genome becomes more predictably mutable. DNA-binding platforms such as TALEs and CRISPR can also be used to make locus-specific epigenetic changes and to transcriptionally enhance or suppress genes. Although many challenges remain, the application of precision gene editing technology in the field of nephrology has enabled the generation of new animal models of disease as well as advances in the development of novel therapeutic approaches such as gene therapy and xenotransplantation.
Collapse
Affiliation(s)
- Zachary WareJoncas
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jarryd M Campbell
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | - William A C Gendron
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Michael A Barry
- Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA
| | - Peter C Harris
- Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA
| | - Caroline R Sussman
- Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
14
|
Sakuma T, Yamamoto T. Acceleration of cancer science with genome editing and related technologies. Cancer Sci 2018; 109:3679-3685. [PMID: 30315615 PMCID: PMC6272086 DOI: 10.1111/cas.13832] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/30/2018] [Accepted: 10/09/2018] [Indexed: 12/26/2022] Open
Abstract
Genome editing includes various edits of the genome, such as short insertions and deletions, substitutions, and chromosomal rearrangements including inversions, duplications, and translocations. These variations are based on single or multiple DNA double-strand break (DSB)-triggered in cellulo repair machineries. In addition to these "conventional" genome editing strategies, tools enabling customized, site-specific recognition of particular nucleic acid sequences have been coming into wider use; for example, single base editing without DSB introduction, epigenome editing with recruitment of epigenetic modifiers, transcriptome engineering using RNA editing systems, and in vitro detection of specific DNA and RNA sequences. In this review, we provide a quick overview of the current state of genome editing and related technologies that multilaterally contribute to cancer science.
Collapse
Affiliation(s)
- Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
15
|
The advances in CRISPR technology and 3D genome. Semin Cell Dev Biol 2018; 90:54-61. [PMID: 30004018 DOI: 10.1016/j.semcdb.2018.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 07/08/2018] [Indexed: 12/26/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system is a prokaryotic immune system that used to resist foreign genetic factors. It rapidly becomes the hot technology in life sciences and is applies for genome editing to solve the problem of genome-derived diseases. Using CRISPR/Cas technique, the biological DNA sequence can be repaired, cut, replaced, or added. It can effectively change the human stem cells and is expected to achieve results in the treatment. Compared with ZFN and TALEN genome editing techniques, CRISPR is more effective, accurate, and convenient. The application of CRISPR technique in three dimensional (3D) genome structure makes us understand the relationship between linear DNA sequence and 3D chromatin structure. Utilizing CRISPR/Cas9 genome editing to reverse or delete CTCF binding sites, to recognize changes of topological isomerism of the genome and interactions between chromatin loops. The purpose of this review is to introduce the characteristics and classification of the current CRISPR/Cas system, multiple functions, and potential therapeutic uses, as well as to outline the effect of the technique on chromatin loops by changing CTCF sites in 3D genomes. We will also briefly describe the importance of ethical dilemmas to be faced in CRISPR applications and provide a perspective for potential CRISPR considerations.
Collapse
|
16
|
Gao D, Zhu B, Cao X, Zhang M, Wang X. Roles of NIPBL in maintenance of genome stability. Semin Cell Dev Biol 2018; 90:181-186. [PMID: 30096364 DOI: 10.1016/j.semcdb.2018.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022]
Abstract
A cohesin-loading factor (NIPBL) is one of important regulatory factors in the maintenance of 3D genome organization and function, by interacting with a large number of factors, e.g. cohesion, CCCTC-binding factor (CTCF) or cohesin complex component. The present article overviews the critical and regulatory roles of NIBPL in cohesion loading on chromotin and in gene expression and transcriptional signaling. We explore molecular mechanisms by which NIPBL recruits endogenous histone deacetylase (HDAC) to induce histone deacetylation and influence multi-dimensions of genome, through which NIPBL "hop" movement in chromatin regulates gene expression and alters genome folding. NIPBL regulates the process of CTCF and cohesion into chromatin loops and topologically associated domains, binding of cohesion and H3K4mes3 through interaction among promoters and enhancers. HP1 recruits NIPBL to DNA damage site through RNF8/RNF168 ubiquitylation pathway. NIPBL contributes to regulation of genome-controlled gene expression through the influence of cohesin in chromosome structure. NIPBL interacts with cohesin and then increases transcriptional activities of REC8 promoter, leading to up-regulation of gene expression. NIPBL movement among chromosomal loops regulates gene expression through dynamic alterations of genome organization. Thus, we expect a new and deep insight to understand dynamics of chromosome and explore potential strategies of therapiesc on basis of NIPBL.
Collapse
Affiliation(s)
- Danyan Gao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Medical School, Shanghai Institute of Clinical Bioinformatics Shanghai, China
| | - Bijun Zhu
- Zhongshan Hospital Institute of Clinical Science, Fudan University Medical School, Shanghai Institute of Clinical Bioinformatics Shanghai, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Medical School, Shanghai Institute of Clinical Bioinformatics Shanghai, China
| | - Miaomiao Zhang
- Zhongshan Hospital Institute of Clinical Science, Fudan University Medical School, Shanghai Institute of Clinical Bioinformatics Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University Medical School, Shanghai Institute of Clinical Bioinformatics Shanghai, China.
| |
Collapse
|
17
|
The future is now: cutting edge science and understanding toxicology. Cell Biol Toxicol 2018; 34:79-85. [DOI: 10.1007/s10565-018-9421-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/09/2018] [Indexed: 12/13/2022]
|
18
|
Zeng Y, Chen X, Wang X. Roles of Single Cell Systems Biomedicine in Lung Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:177-185. [PMID: 29943305 DOI: 10.1007/978-981-13-0502-3_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Single cell sequencing is important to detect the gene heterogeneity between cells, as the part of single-cell systems biology which combines computational science, mathematical modelling and high-throughput technologies with biological function and organization in the cell. We initially arise the question how to integrate the outcomes of single-cell systems biology with clinical phenotype, interpret alterations of single-cell gene sequencing and function in patient response to therapies, and understand the significance of single-cell systems biology in the discovery and development of new molecular diagnostics and therapeutics. The present review furthermore focuses the significance of singe cell systems biology in respiratory diseases and calls the special attention from scientists who are working on single cell systems biology to improve the diagnosis and therapy for patients with lung diseases.
Collapse
Affiliation(s)
- Yiming Zeng
- Department of Respiratory Pulmonary and Critical Care Medicine, The Second Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| | - Xiaoyang Chen
- Department of Respiratory Pulmonary and Critical Care Medicine, The Second Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xiangdong Wang
- Department of Respiratory Pulmonary and Critical Care Medicine, The Second Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
19
|
Can the Single Cell Make Biomedicine Different? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:1-6. [PMID: 29943291 DOI: 10.1007/978-981-13-0502-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The single-cell as the basic unit of biological organs and tissues has recently been considered an important window to furthermore understand molecular mechanisms of organ function and biology. The current issue with a special focus on single cell biomedicine is the first effort to collect the evidence of disease-associated single cell research, define the significance of single cell biomedicine in the pathogenesis of diseases, value the correlation of single cell gene sequencing with disease-specific biomarkers, and monitor the dynamics of RNA processes and responses to microenvironmental changes and drug resistances.
Collapse
|
20
|
Zhu Z, Wang X. Significance of Mitochondria DNA Mutations in Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1038:219-230. [PMID: 29178079 DOI: 10.1007/978-981-10-6674-0_15] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitochondria are essential double-membraned cytoplasmic organelles to support aerobic respiration and produce cellular energy by oxidative phosphorylation (OXPHOS). Mitochondrial functions are controlled by mitochondrial (mtDNA) and nuclear genomes (nDNA). Mutations of mtDNA result in mitochondrial dysfunction and multisystem diseases through compromising OXPHOS function directly by a point mutation or a large-scale mtDNA rearrangement. One or more of OXPHOS complexes are impaired and dysfunctional to affect tissues with high energy demands. mtDNA is more susceptible to oxidative damage and has more mutations than nDNA. Unlike diploid nDNA, mtDNA is a multi-copy genome transmitted and maternally inherited through oocyte. The multi-copy nature of mtDNA easily causes the heteroplasmy as a unique aspect of mtDNA, making mitochondrial diseases more complex and heterogeneous. mtDNA-associated mitochondrial dysfunction plays the important role in the development of multisystemic primary mitochondrial disease, neurodegeneration, and cancer. The present article overviews the occurrence of mtDNA mutation, interactions with other factors, and molecular mechanisms of mtDNA-associated diseases.
Collapse
Affiliation(s)
- Zhenhua Zhu
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China.
| |
Collapse
|