1
|
Zhao T, Zeng J, Zhang R, Pu L, Wang H, Pan L, Jiang Y, Dai X, Sha Y, Han L. Proteomic advance of ischemic stroke: preclinical, clinical, and intervention. Metab Brain Dis 2023; 38:2521-2546. [PMID: 37440002 DOI: 10.1007/s11011-023-01262-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Abstract
Ischemic stroke (IS) is the most common type of stroke and is characterized by high rates of mortality and long-term injury. The prediction and early diagnosis of IS are therefore crucial for optimal clinical intervention. Proteomics has provided important techniques for exploring protein markers associated with IS, but there has been no systematic evaluation and review of research that has used these techniques. Here, we review the differential proteins that have been found in cell- and animal- based studies and clinical trials of IS in the past 10 years; determine the key pathological proteins that have been identified in clinical trials; summarize the target proteins affected by interventions aimed at treating IS, with a focus on traditional Chinese medicine treatments. Overall, we clarify findings and problems that have been identified in recent proteomics research on IS and provide suggestions for improvements in this area. We also suggest areas that could be explored for determining the pathogenesis and developing interventions for IS.
Collapse
Affiliation(s)
- Tian Zhao
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No.2 Hospital, 41 Northwest Street, Ningbo, 315000, Zhejiang, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, China
| | - Jingjing Zeng
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No.2 Hospital, 41 Northwest Street, Ningbo, 315000, Zhejiang, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, China
| | - Ruijie Zhang
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No.2 Hospital, 41 Northwest Street, Ningbo, 315000, Zhejiang, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, China
| | - Liyuan Pu
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No.2 Hospital, 41 Northwest Street, Ningbo, 315000, Zhejiang, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, China
| | - Han Wang
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No.2 Hospital, 41 Northwest Street, Ningbo, 315000, Zhejiang, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, China
| | - Lifang Pan
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No.2 Hospital, 41 Northwest Street, Ningbo, 315000, Zhejiang, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, China
| | - Yannan Jiang
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No.2 Hospital, 41 Northwest Street, Ningbo, 315000, Zhejiang, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, China
| | - Xiaoyu Dai
- Department of Anus & Intestine Surgery, Ningbo No.2 Hospital, Ningbo, 315000, China
| | - Yuyi Sha
- Department of Intensive Care Medicine, Ningbo No.2 Hospital, Ningbo, 315000, China.
| | - Liyuan Han
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No.2 Hospital, 41 Northwest Street, Ningbo, 315000, Zhejiang, China.
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, China.
| |
Collapse
|
2
|
Zafarmand SS, Karimi-Haghighi S, Salehi MS, Hooshmandi E, Owjfard M, Bayat M, Karimlou S, Pandamooz S, Dianatpour M, Borhani-Haghighi A. Aspirin impacts on stem cells: Implications for therapeutic targets. Tissue Cell 2021; 74:101707. [PMID: 34883315 DOI: 10.1016/j.tice.2021.101707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/27/2022]
Abstract
Despite the regenerative potential of stem cell therapy in pre-clinical investigations, clinical translation of cell-based therapy has not been completely clarified. In recent years, the importance of lifestyle, patient comorbidities, and prescribed medication has attracted more attention in the efficacy of cell therapy. As a nonsteroidal anti-inflammatory drug, aspirin is one of the most prevalent prescribed medications in the clinic for various disorders. Hence, aspirin treatment might affect the efficacy of stem cell therapy. In this regard, the current review focused on the impacts of aspirin on the viability, proliferation, differentiation, and immunomodulatory properties of stem cells in vitro as well as in experimental animal models.
Collapse
Affiliation(s)
| | | | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Karimlou
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
4
|
Zuo Q, Zou Y, Huang S, Wang T, Xu Y, Zhang T, Zhang M, Ge Z, Jiang Z. Aspirin reduces sFlt-1-mediated apoptosis of trophoblast cells in preeclampsia. Mol Hum Reprod 2021; 27:6119638. [PMID: 33493277 DOI: 10.1093/molehr/gaaa089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/02/2020] [Indexed: 01/01/2023] Open
Abstract
Preeclampsia (PE) is a hypertensive disorder that occurs during pregnancy. Low-dose aspirin is used to reduce the occurrence of early-onset PE; however, the mechanisms are not clear. The aim of this study was to reveal the underlying mechanism of aspirin in reducing sFlt-1-mediated apoptosis of trophoblast cells in PE. Serum sFlt-1 and sEng profiles and placental oxidative stress levels were significantly decreased in PE patients treated with aspirin compared with untreated patients without it, whereas serum PLGF and placental SOD profiles were increased in PE patients with aspirin. Aspirin attenuated the role of sFlt-1 in oxidative stress and endothelial dysfunction and reduced apoptosis of trophoblasts by inactivating the NF-κB signalling pathway in HTR-8/SVneo trophoblast cells. Blood pressure, urine protein, swelling of the villous vessels and mitochondrial parameters were noted to be much better after aspirin administrated to sFlt-1 treated pregnant mice. In conclusion, aspirin reverses the endothelial dysfunction and oxidative stress caused by sFlt-1 and thus reduces apoptosis of preeclamptic trophoblasts by inactivating NF-κB signalling pathway.
Collapse
Affiliation(s)
- Qing Zuo
- Department of Obstetrics and Gynaecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yanfeng Zou
- Department of Obstetrics and Gynaecology, the affiliated Hospital of Yantai Yuhuagnding Hospital of Qingdao University, Yantai, 264000, Shangdong Province, China
| | - Shiyun Huang
- Department of Obstetrics and Gynaecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tianjun Wang
- Department of Obstetrics and Gynaecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yetao Xu
- Department of Obstetrics and Gynaecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tingting Zhang
- Department of Obstetrics and Gynaecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Min Zhang
- Department of Obstetrics and Gynaecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhiping Ge
- Department of Obstetrics and Gynaecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ziyan Jiang
- Department of Obstetrics and Gynaecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
5
|
Glia-Like Cells from Human Mesenchymal Stem Cells Protect Neural Stem Cells in an In Vitro Model of Alzheimer's Disease by Reducing NLRP-3 Inflammasome. Dement Neurocogn Disord 2020; 20:1-8. [PMID: 33552214 PMCID: PMC7847801 DOI: 10.12779/dnd.2021.20.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/22/2023] Open
Abstract
Background and Purpose Neural stem cells (NSCs) have the ability to regenerate, proliferate, and differentiate, enabling them to play important roles in the recovery of the damaged nervous system. However, in neurodegenerative diseases such as Alzheimer's disease (AD), the NSCs are damaged as well. Glia-like cells from human mesenchymal stem cells (ghMSCs) are functionally enhanced adult stem cells. In the present study, we investigated whether ghMSCs could protect NSCs from amyloid beta (Aβ)-mediated toxicity. Methods Rat NSCs were obtained from E13–14 fetal rat cortices. NSCs were seeded in pre-coated plates, and the next day, cells were simultaneously treated with 20 μM Aβ and 0.4 μm pore insert well-seeded ghMSCs. After 48 hours of co-treatment, cell viability and proliferation were evaluated. After 2 hours of co-treatment, western blotting was performed to measure inflammasome-related factors, such as NOD-like receptor family pyrin domain containing 3, caspase-1, and interleukin-1β. Results The results showed that ghMSCs increased viability and proliferation and reduced the toxicity of NSCs injured by Aβ by reducing the NRLP3 inflammasome activation of NSCs induced by Aβ. Conclusions In this study, we confirmed that ghMSCs could protect NSCs in an in vitro model of AD through the regulation of inflammatory response.
Collapse
|
6
|
Wang Z, Zhang X. Single Cell Proteomics for Molecular Targets in Lung Cancer: High-Dimensional Data Acquisition and Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:73-87. [PMID: 29943297 DOI: 10.1007/978-981-13-0502-3_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the proteomic and genomic era, lung cancer researchers are increasingly under challenge with traditional protein analyzing tools. High output, multiplexed analytical procedures are in demand for disclosing the post-translational modification, molecular interactions and signaling pathways of proteins precisely, specifically, dynamically and systematically, as well as for identifying novel proteins and their functions. This could be better realized by single-cell proteomic methods than conventional proteomic methods. Using single-cell proteomic tools including flow cytometry, mass cytometry, microfluidics and chip technologies, chemical cytometry, single-cell western blotting, the quantity and functions of proteins are analyzed simultaneously. Aside from deciphering disease mechanisms, single-cell proteomic techniques facilitate the identification and screening of biomarkers, molecular targets and promising compounds as well. This review summarized single-cell proteomic tools and their use in lung cancer.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Zhengzhou, China. .,Biomedical Research Center, Zhengzhou University People's Hospital, Zhengzhou, China.
| |
Collapse
|