1
|
Shuai Y, Ma Z, Ju J, Wei T, Gao S, Kang Y, Yang Z, Wang X, Yue J, Yuan P. Liquid-based biomarkers in breast cancer: looking beyond the blood. J Transl Med 2023; 21:809. [PMID: 37957623 PMCID: PMC10644618 DOI: 10.1186/s12967-023-04660-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
In recent decades, using circulating tumor cell (CTC), circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), exosomes and etc. as liquid biomarkers has received enormous attention in various tumors, including breast cancer (BC). To date, efforts in the area of liquid biopsy predominantly focus on the analysis of blood-based markers. It is worth noting that the identifications of markers from non-blood sources provide unique advantages beyond the blood and these alternative sources may be of great significance in offering supplementary information in certain settings. Here, we outline the latest advances in the analysis of non-blood biomarkers, predominantly including urine, saliva, cerebrospinal fluid, pleural fluid, stool and etc. The unique advantages of such testings, their current limitations and the appropriate use of non-blood assays and blood assays in different settings are further discussed. Finally, we propose to highlight the challenges of these alternative assays from basic to clinical implementation and explore the areas where more investigations are warranted to elucidate its potential utility.
Collapse
Affiliation(s)
- You Shuai
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhonghua Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Endoscopy, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jie Ju
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tong Wei
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Songlin Gao
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yikun Kang
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zixuan Yang
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xue Wang
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jian Yue
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peng Yuan
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Jiang S, Wang H, Zhu J, Xu X, Chen L, Wang B, Zhou B, Zhu Y, Zhang Z, Ma B, Du B, Yang Y. Identify the Clinicopathological Characteristics of Lung Carcinoma Patients Being False Negative in Folate Receptor Based Circulating Tumor Cell Detection. SMALL METHODS 2023; 7:e2300055. [PMID: 37330646 DOI: 10.1002/smtd.202300055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/27/2023] [Indexed: 06/19/2023]
Abstract
In lung cancer diagnosis, folate receptor (FR)-based circulating tumor cell (CTC) has shown its ability to distinguish malignancy from benign disease to some extent. However, there are still some patients that cannot be identified by FR-based CTC detection. And studies comparing the characteristics between true positive (TP) and false negative (FN) patients are few. Thus, the study comprehensively analyzes the clinicopathological characteristics of FN and TP patients in the current study. According to inclusion and exclusion criteria, 3420 patients are enrolled. Combining the pathological diagnosis with CTC results, patients are divided into FN and TP groups, and clinicopathological characteristics are compared between two groups. Compared with TP patients, FN patients have smaller tumor, early T stage, early pathological stage, and without lymph node metastasis. Epidermal growth factor receptor (EGFR) mutation status is different between FN and TP group. And this result is also demonstrated in lung adenocarcinoma subgroup but not in lung squamous cell carcinoma subgroup. Tumor size, T stage, pathological stage, lymph node metastasis, and EGFR mutation status may influence the accuracy of FR-based CTC detection in lung cancer. However, further prospective studies are needed to confirm the findings.
Collapse
Affiliation(s)
- Siming Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Junjie Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Xinnan Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Linsong Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Bo Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Bin Zhou
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yuming Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Zhemin Zhang
- Department of Respiratory Medicine Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Benting Ma
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bin Du
- Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| |
Collapse
|
3
|
Martel A, Mograbi B, Romeo B, Gastaud L, Lalvee S, Zahaf K, Fayada J, Nahon-Esteve S, Bonnetaud C, Salah M, Tanga V, Baillif S, Bertolotto C, Lassalle S, Hofman P. Assessment of Different Circulating Tumor Cell Platforms for Uveal Melanoma: Potential Impact for Future Routine Clinical Practice. Int J Mol Sci 2023; 24:11075. [PMID: 37446253 DOI: 10.3390/ijms241311075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Liquid biopsy and circulating tumor cell (CTC) screening has gained interest over the last two decades for detecting almost all solid malignancies. To date, the major limitation in terms of the applicability of CTC screening in daily clinical practice is the lack of reproducibility due to the high number of platforms available that use various technologies (e.g., label-dependent versus label-free detection). Only a few studies have compared different CTC platforms. The aim of this study was to compare the efficiency of four commercially available CTC platforms (Vortex (VTX-1), ClearCell FX, ISET, and Cellsearch) for the detection and identification of uveal melanoma cells (OMM 2.3 cell line). Tumor cells were seeded in RPMI medium and venous blood from healthy donors, and then processed similarly using these four platforms. Melan-A immunochemistry was performed to identify tumor cells, except when the Cellsearch device was used (automated identification). The mean overall recovery rates (with mean recovered cells) were 39.2% (19.92), 22.2% (11.31), 8.9% (4.85), and 1.1% (0.20) for the ISET, Vortex (VTX-1), ClearCell FX, and CellSearch platforms, respectively. Although paramount, the recovery rate is not sufficient to assess a CTC platform. Other parameters, such as the purpose for using a platform (diagnosis, genetics, drug sensitivity, or patient-derived xenograft models), reproducibility, purity, user-friendliness, cost-effectiveness, and ergonomics, should also be considered before they can be used in daily clinical practice and are discussed in this article.
Collapse
Affiliation(s)
- Arnaud Martel
- Ophthalmology Department, University Hospital of Nice, Cote d'Azur University, 06 000 Nice, France
- Institute for Research on Cancer and Aging, Nice (IRCAN), FHU OncoAge, Cote d'Azur University, 06 000 Nice, France
| | - Baharia Mograbi
- Institute for Research on Cancer and Aging, Nice (IRCAN), FHU OncoAge, Cote d'Azur University, 06 000 Nice, France
| | - Barnabe Romeo
- Institute for Research on Cancer and Aging, Nice (IRCAN), FHU OncoAge, Cote d'Azur University, 06 000 Nice, France
| | - Lauris Gastaud
- Oncology Department, Antoine Lacassagne Cancer Center, 06 000 Nice, France
| | - Salome Lalvee
- Laboratory of Clinical and Experimental Pathology, University Hospital of Nice, FHU OncoAge, Cote d'Azur University, Biobank BB-0033-00025, 06 000 Nice, France
| | - Katia Zahaf
- Laboratory of Clinical and Experimental Pathology, University Hospital of Nice, FHU OncoAge, Cote d'Azur University, Biobank BB-0033-00025, 06 000 Nice, France
| | - Julien Fayada
- Laboratory of Clinical and Experimental Pathology, University Hospital of Nice, FHU OncoAge, Cote d'Azur University, Biobank BB-0033-00025, 06 000 Nice, France
| | - Sacha Nahon-Esteve
- Ophthalmology Department, University Hospital of Nice, Cote d'Azur University, 06 000 Nice, France
- Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, 06 100 Nice, France
| | - Christelle Bonnetaud
- Laboratory of Clinical and Experimental Pathology, University Hospital of Nice, FHU OncoAge, Cote d'Azur University, Biobank BB-0033-00025, 06 000 Nice, France
| | - Myriam Salah
- Laboratory of Clinical and Experimental Pathology, University Hospital of Nice, FHU OncoAge, Cote d'Azur University, Biobank BB-0033-00025, 06 000 Nice, France
| | - Virginie Tanga
- Laboratory of Clinical and Experimental Pathology, University Hospital of Nice, FHU OncoAge, Cote d'Azur University, Biobank BB-0033-00025, 06 000 Nice, France
| | - Stéphanie Baillif
- Ophthalmology Department, University Hospital of Nice, Cote d'Azur University, 06 000 Nice, France
| | - Corine Bertolotto
- Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, 06 100 Nice, France
| | - Sandra Lassalle
- Institute for Research on Cancer and Aging, Nice (IRCAN), FHU OncoAge, Cote d'Azur University, 06 000 Nice, France
- Laboratory of Clinical and Experimental Pathology, University Hospital of Nice, FHU OncoAge, Cote d'Azur University, Biobank BB-0033-00025, 06 000 Nice, France
| | - Paul Hofman
- Institute for Research on Cancer and Aging, Nice (IRCAN), FHU OncoAge, Cote d'Azur University, 06 000 Nice, France
- Laboratory of Clinical and Experimental Pathology, University Hospital of Nice, FHU OncoAge, Cote d'Azur University, Biobank BB-0033-00025, 06 000 Nice, France
| |
Collapse
|
4
|
Interrogating breast cancer heterogeneity using single and pooled circulating tumor cell analysis. NPJ Breast Cancer 2022; 8:79. [PMID: 35790747 PMCID: PMC9256697 DOI: 10.1038/s41523-022-00445-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Single cell technologies allow the interrogation of tumor heterogeneity, providing insights into tumor evolution and treatment resistance. To better understand whether circulating tumor cells (CTCs) could complement metastatic biopsies for tumor genomic profiling, we characterized 11 single CTCs and 10 pooled CTC samples at the mutational and copy number aberration (CNA) levels, and compared these results with matched synchronous tumor biopsies from 3 metastatic breast cancer patients with triple-negative (TNBC), HER2-positive and estrogen receptor-positive (ER+) tumors. Similar CNA profiles and the same patient-specific driver mutations were found in bulk tissue and CTCs for the HER2-positive and TNBC tumors, whereas different CNA profiles and driver mutations were identified for the ER+ tumor, which presented two distinct clones in CTCs defined by mutations in ESR1 Y537N and TP53, respectively. Furthermore, de novo mutational signatures derived from CTCs described patient-specific biological processes. These data suggest that tumor tissue and CTCs provide complementary clinically relevant information to map tumor heterogeneity and tumor evolution.
Collapse
|
5
|
Bhat MP, Thendral V, Uthappa UT, Lee KH, Kigga M, Altalhi T, Kurkuri MD, Kant K. Recent Advances in Microfluidic Platform for Physical and Immunological Detection and Capture of Circulating Tumor Cells. BIOSENSORS 2022; 12:220. [PMID: 35448280 PMCID: PMC9025399 DOI: 10.3390/bios12040220] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 05/05/2023]
Abstract
CTCs (circulating tumor cells) are well-known for their use in clinical trials for tumor diagnosis. Capturing and isolating these CTCs from whole blood samples has enormous benefits in cancer diagnosis and treatment. In general, various approaches are being used to separate malignant cells, including immunomagnets, macroscale filters, centrifuges, dielectrophoresis, and immunological approaches. These procedures, on the other hand, are time-consuming and necessitate multiple high-level operational protocols. In addition, considering their low efficiency and throughput, the processes of capturing and isolating CTCs face tremendous challenges. Meanwhile, recent advances in microfluidic devices promise unprecedented advantages for capturing and isolating CTCs with greater efficiency, sensitivity, selectivity and accuracy. In this regard, this review article focuses primarily on the various fabrication methodologies involved in microfluidic devices and techniques specifically used to capture and isolate CTCs using various physical and biological methods as well as their conceptual ideas, advantages and disadvantages.
Collapse
Affiliation(s)
- Mahesh Padmalaya Bhat
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
- Agricultural Automation Research Center, Chonnam National University, Gwangju 61186, Korea;
| | - Venkatachalam Thendral
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
| | | | - Kyeong-Hwan Lee
- Agricultural Automation Research Center, Chonnam National University, Gwangju 61186, Korea;
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea
| | - Madhuprasad Kigga
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
| | - Tariq Altalhi
- Department of Chemistry, Faculty of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Mahaveer D. Kurkuri
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
| | - Krishna Kant
- Departamento de Química Física, Campus Universitario, CINBIO Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
6
|
Zhou WM, Yan YY, Guo QR, Ji H, Wang H, Xu TT, Makabel B, Pilarsky C, He G, Yu XY, Zhang JY. Microfluidics applications for high-throughput single cell sequencing. J Nanobiotechnology 2021; 19:312. [PMID: 34635104 PMCID: PMC8507141 DOI: 10.1186/s12951-021-01045-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
The inherent heterogeneity of individual cells in cell populations plays significant roles in disease development and progression, which is critical for disease diagnosis and treatment. Substantial evidences show that the majority of traditional gene profiling methods mask the difference of individual cells. Single cell sequencing can provide data to characterize the inherent heterogeneity of individual cells, and reveal complex and rare cell populations. Different microfluidic technologies have emerged for single cell researches and become the frontiers and hot topics over the past decade. In this review article, we introduce the processes of single cell sequencing, and review the principles of microfluidics for single cell analysis. Also, we discuss the common high-throughput single cell sequencing technologies along with their advantages and disadvantages. Lastly, microfluidics applications in single cell sequencing technology for the diagnosis of cancers and immune system diseases are briefly illustrated.
Collapse
Affiliation(s)
- Wen-Min Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yan-Yan Yan
- School of Medicine, Shanxi Datong University, Datong, 037009, People's Republic of China
| | - Qiao-Ru Guo
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Hong Ji
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Hui Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Tian-Tian Xu
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Bolat Makabel
- Xinjiang Institute of Materia Medica, Urumqi, 830004, People's Republic of China
| | - Christian Pilarsky
- Department of Surgery, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Gen He
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| | - Jian-Ye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
7
|
Zhou Z, Chen Y, Zhu S, Liu L, Ni Z, Xiang N. Inertial microfluidics for high-throughput cell analysis and detection: a review. Analyst 2021; 146:6064-6083. [PMID: 34490431 DOI: 10.1039/d1an00983d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since it was first proposed in 2007, inertial microfluidics has been extensively studied in terms of theory, design, fabrication, and application. In recent years, with the rapid development of microfabrication technologies, a variety of channel structures that can focus, concentrate, separate, and capture bioparticles or fluids have been designed and manufactured to extend the range of potential biomedical applications of inertial microfluidics. Due to the advantages of high throughput, simplicity, and low device cost, inertial microfluidics is a promising candidate for rapid sample processing, especially for large-volume samples with low-abundance targets. As an approach to cellular sample pretreatment, inertial microfluidics has been widely employed to ensure downstream cell analysis and detection. In this review, a comprehensive summary of the application of inertial microfluidics for high-throughput cell analysis and detection is presented. According to application areas, the recent advances can be sorted into label-free cell mechanical phenotyping, sheathless flow cytometric counting, electrical impedance cytometer, high-throughput cellular image analysis, and other methods. Finally, the challenges and prospects of inertial microfluidics for cell analysis and detection are summarized.
Collapse
Affiliation(s)
- Zheng Zhou
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Yao Chen
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Shu Zhu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Linbo Liu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
8
|
Duncan JL, Davalos RV. A review: Dielectrophoresis for characterizing and separating similar cell subpopulations based on bioelectric property changes due to disease progression and therapy assessment. Electrophoresis 2021; 42:2423-2444. [PMID: 34609740 DOI: 10.1002/elps.202100135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022]
Abstract
This paper reviews the use of dielectrophoresis for high-fidelity separations and characterizations of subpopulations to highlight the recent advances in the electrokinetic field as well as provide insight into its progress toward commercialization. The role of cell subpopulations in heterogeneous clinical samples has been studied to deduce their role in disease progression and therapy resistance for instances such as cancer, tissue regeneration, and bacterial infection. Dielectrophoresis (DEP), a label-free electrokinetic technique, has been used to characterize and separate target subpopulations from mixed samples to determine disease severity, cell stemness, and drug efficacy. Despite its high sensitivity to characterize similar or related cells based on their differing bioelectric signatures, DEP has been slowly adopted both commercially and clinically. This review addresses the use of dielectrophoresis for the identification of target cell subtypes in stem cells, cancer cells, blood cells, and bacterial cells dependent on cell state and therapy exposure and addresses commercialization efforts in light of its sensitivity and future perspectives of the technology, both commercially and academically.
Collapse
Affiliation(s)
- Josie L Duncan
- Bioelectromechanical Systems Laboratory, Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia, USA.,Bioelectromechanical Systems Laboratory, Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Rafael V Davalos
- Bioelectromechanical Systems Laboratory, Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia, USA.,Bioelectromechanical Systems Laboratory, Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
9
|
Lopes C, Piairo P, Chícharo A, Abalde-Cela S, Pires LR, Corredeira P, Alves P, Muinelo-Romay L, Costa L, Diéguez L. HER2 Expression in Circulating Tumour Cells Isolated from Metastatic Breast Cancer Patients Using a Size-Based Microfluidic Device. Cancers (Basel) 2021; 13:4446. [PMID: 34503260 PMCID: PMC8431641 DOI: 10.3390/cancers13174446] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
HER2 is a prognostic and predictive biomarker in breast cancer, normally assessed in tumour biopsy and used to guide treatment choices. Circulating tumour cells (CTCs) escape the primary tumour and enter the bloodstream, exhibiting great metastatic potential and representing a real-time snapshot of the tumour burden. Liquid biopsy offers the unique opportunity for low invasive sampling in cancer patients and holds the potential to provide valuable information for the clinical management of cancer patients. This study assesses the performance of the RUBYchip™, a microfluidic system for CTC capture based on cell size and deformability, and compares it with the only FDA-approved technology for CTC enumeration, CellSearch®. After optimising device performance, 30 whole blood samples from metastatic breast cancer patients were processed with both technologies. The expression of HER2 was assessed in isolated CTCs and compared to tissue biopsy. Results show that the RUBYchipTM was able to isolate CTCs with higher efficiency than CellSearch®, up to 10 times more, averaging all samples. An accurate evaluation of different CTC subpopulations, including HER2+ CTCs, was provided. Liquid biopsy through the use of the RUBYchipTM in the clinic can overcome the limitations of histological testing and evaluate HER2 status in patients in real-time, helping to tailor treatment during disease evolution.
Collapse
Affiliation(s)
- Cláudia Lopes
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| | - Paulina Piairo
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| | - Alexandre Chícharo
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| | - Liliana R. Pires
- RUBYnanomed Lda, Praça Conde de Agrolongo 123, 4700-312 Braga, Portugal;
| | - Patrícia Corredeira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (P.C.); (P.A.); (L.C.)
| | - Patrícia Alves
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (P.C.); (P.A.); (L.C.)
| | - Laura Muinelo-Romay
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago (IDIS), Complejo Hospitalario de Santiago de Compostela, Trav. Choupana s/n, 15706 Santiago de Compostela, Spain;
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, Calle de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Luís Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (P.C.); (P.A.); (L.C.)
- Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Av Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Lorena Diéguez
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| |
Collapse
|
10
|
Kalyan S, Torabi C, Khoo H, Sung HW, Choi SE, Wang W, Treutler B, Kim D, Hur SC. Inertial Microfluidics Enabling Clinical Research. MICROMACHINES 2021; 12:257. [PMID: 33802356 PMCID: PMC7999476 DOI: 10.3390/mi12030257] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/20/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Fast and accurate interrogation of complex samples containing diseased cells or pathogens is important to make informed decisions on clinical and public health issues. Inertial microfluidics has been increasingly employed for such investigations to isolate target bioparticles from liquid samples with size and/or deformability-based manipulation. This phenomenon is especially useful for the clinic, owing to its rapid, label-free nature of target enrichment that enables further downstream assays. Inertial microfluidics leverages the principle of inertial focusing, which relies on the balance of inertial and viscous forces on particles to align them into size-dependent laminar streamlines. Several distinct microfluidic channel geometries (e.g., straight, curved, spiral, contraction-expansion array) have been optimized to achieve inertial focusing for a variety of purposes, including particle purification and enrichment, solution exchange, and particle alignment for on-chip assays. In this review, we will discuss how inertial microfluidics technology has contributed to improving accuracy of various assays to provide clinically relevant information. This comprehensive review expands upon studies examining both endogenous and exogenous targets from real-world samples, highlights notable hybrid devices with dual functions, and comments on the evolving outlook of the field.
Collapse
Affiliation(s)
- Srivathsan Kalyan
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; (S.K.); (C.T.); (H.K.); (S.-E.C.)
| | - Corinna Torabi
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; (S.K.); (C.T.); (H.K.); (S.-E.C.)
| | - Harrison Khoo
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; (S.K.); (C.T.); (H.K.); (S.-E.C.)
| | - Hyun Woo Sung
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA;
| | - Sung-Eun Choi
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; (S.K.); (C.T.); (H.K.); (S.-E.C.)
| | - Wenzhao Wang
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; (W.W.); (B.T.)
| | - Benjamin Treutler
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; (W.W.); (B.T.)
| | - Dohyun Kim
- Department of Mechanical Engineering, Myongji University, Yongin-si 17508, Korea
| | - Soojung Claire Hur
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; (S.K.); (C.T.); (H.K.); (S.-E.C.)
- Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
- Department of Oncology, Johns Hopkins University, 600 N Wolfe St, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 401 N Broadway, Baltimore, MD 21231, USA
| |
Collapse
|
11
|
Rushton AJ, Nteliopoulos G, Shaw JA, Coombes RC. A Review of Circulating Tumour Cell Enrichment Technologies. Cancers (Basel) 2021; 13:cancers13050970. [PMID: 33652649 PMCID: PMC7956528 DOI: 10.3390/cancers13050970] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Circulating tumour cells (CTCs) are cancer cells shed into the bloodstream from tumours and their analysis can provide important insights into cancer detection and monitoring, with the potential to direct personalised therapies for the patient. These CTCs are rare in the blood, which makes their detection and enrichment challenging and to date, only one technology (the CellSearch) has gained FDA approval for determining the prognosis of patients with advanced breast, prostate and colorectal cancers. Here, we review the wide range of enrichment technologies available to isolate CTCs from other blood components and highlight the important characteristics that new technologies should possess for routine clinical use. Abstract Circulating tumour cells (CTCs) are the precursor cells for the formation of metastatic disease. With a simple blood draw, liquid biopsies enable the non-invasive sampling of CTCs from the blood, which have the potential to provide important insights into cancer detection and monitoring. Since gaining FDA approval in 2004, the CellSearch system has been used to determine the prognosis of patients with metastatic breast, prostate and colorectal cancers. This utilises the cell surface marker Epithelial Cell Adhesion Molecule (EpCAM), to enrich CTCs, and many other technologies have adopted this approach. More recently, the role of mesenchymal-like CTCs in metastasis formation has come to light. It has been suggested that these cells are more aggressive metastatic precursors than their epithelial counterparts; however, mesenchymal CTCs remain undetected by EpCAM-based enrichment methods. This has prompted the development of a variety of ‘label free’ enrichment technologies, which exploit the unique physical properties of CTCs (such as size and deformability) compared to other blood components. Here, we review a wide range of both immunocapture and label free CTC enrichment technologies, summarising the most significant advantages and disadvantages of each. We also highlight the important characteristics that technologies should possess for routine clinical use, since future developments could have important clinical implications, with the potential to direct personalised therapies for patients with cancer.
Collapse
Affiliation(s)
- Amelia J. Rushton
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (G.N.); (R.C.C.)
- Correspondence:
| | - Georgios Nteliopoulos
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (G.N.); (R.C.C.)
| | - Jacqueline A. Shaw
- Leicester Cancer Research Centre, University of Leicester, Leicester LE2 7LX, UK;
| | - R. Charles Coombes
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (G.N.); (R.C.C.)
| |
Collapse
|
12
|
Abdulla A, Zhang T, Ahmad KZ, Li S, Lou J, Ding X. Label-free Separation of Circulating Tumor Cells Using a Self-Amplified Inertial Focusing (SAIF) Microfluidic Chip. Anal Chem 2020; 92:16170-16179. [PMID: 33232155 DOI: 10.1021/acs.analchem.0c03920] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circulating tumor cells (CTCs) are rare cells existing in the bloodstream with a relatively low number, which facilitate as a predictor of cancer progress. However, it is difficult to obtain highly purified intact CTCs with desired viability due to the low percentage of CTCs among blood cells. In this work, we demonstrate a novel self-amplified inertial focused (SAIF) microfluidic chip that enables size-based, high-throughput, label-free separation of CTCs from a patient's blood. The SAIF chip introduced in this study demonstrated the feasibility of an extremely narrow zigzag channel (with 40 μm channel width) connected with two expansion regions to effectively separate different-sized cells with amplified separation distance. The chip performance was optimized with different-sized polystyrene (PS) particles and blood cells spiked with three different types of cancer cells. The separation efficiencies for blood cells and spiked cancer cells are higher than 80%. Recovery rates of cancer cells were tested by spiking 1500 lung cancer cells (A549), breast cancer cells (MCF-7), and cervical cancer cells (HeLa) separately to 3 mL 0.09% saline with 3 × 106 white blood cells (WBCs). The recovery rates for larger cells (MCF-7 and HeLa) were 79.1 and 85.4%, respectively. Viabilities of the cells harvested from outlets were all higher than 97% after culturing for 24, 48, and 72 h. The SAIF chip performance was further confirmed using the real clinical patient blood samples from four lung cancer patients. Theoretical force balance analysis in physics, computational simulations, and experimental observations indicate that the SAIF chip is simple but effective, and high-throughput separation CTCs can be readily achieved without complex structures.
Collapse
Affiliation(s)
- Aynur Abdulla
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 1954, Huashan Road, Shanghai 200030, China
| | - Ting Zhang
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 1954, Huashan Road, Shanghai 200030, China
| | - Khan Zara Ahmad
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 1954, Huashan Road, Shanghai 200030, China
| | - Shanhe Li
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 1954, Huashan Road, Shanghai 200030, China
| | - Jiatao Lou
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 Huaihai West Road, Shanghai 200030, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 1954, Huashan Road, Shanghai 200030, China
| |
Collapse
|
13
|
Liu X, Zhang T, Li Y, Zhang Y, Zhang H, Wang X, Li L. The Role of Methylation in the CpG Island of the ARHI Promoter Region in Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1255:123-132. [PMID: 32949395 DOI: 10.1007/978-981-15-4494-1_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypermethylation can downregulate many tumor suppressor gene expressions. Aplasia Ras homologue member I (ARHI, DIRAS3) is one of the maternally imprinted tumor suppressors in the RAS superfamily. This chapter overviewed the importance of ARHI methylation and expression phenomes in various types of cancers, although the exact mechanisms remain unclear. As an imprinted gene, aberrant DNA methylation of the paternal allele of ARHI was identified as a primary inhibitor of ARHI expression. The role of methylation in the CpG islands of the ARHI promoter region vary among ovarian cancers, breast cancers, hepatocellular carcinoma, colon cancers, pancreatic cancer osteosarcoma, glial tumors, follicular thyroid carcinoma, or lung cancers. The methylation of ARHI provides a new insight to understand molecular mechanisms of tumorigenesis and progression of cancers.
Collapse
Affiliation(s)
- Xiaozhuan Liu
- Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Zhengzhou University People's Hospital, Zhengzhou, Henan, China
- Henan University People's Hospital, Zhengzhou, Henan, China
| | - Tingting Zhang
- Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Zhengzhou University People's Hospital, Zhengzhou, Henan, China
- Henan University People's Hospital, Zhengzhou, Henan, China
| | - Yanjun Li
- Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Zhengzhou University People's Hospital, Zhengzhou, Henan, China
- Henan University People's Hospital, Zhengzhou, Henan, China
| | - Yuwei Zhang
- Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Zhengzhou University People's Hospital, Zhengzhou, Henan, China
- Henan University People's Hospital, Zhengzhou, Henan, China
| | - Hui Zhang
- Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Zhengzhou University People's Hospital, Zhengzhou, Henan, China
- Henan University People's Hospital, Zhengzhou, Henan, China
| | - Xiangdong Wang
- Zhongshan Hospital, Fudan University, Shanghai, Shanghai, China
| | - Li Li
- Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
- Zhengzhou University People's Hospital, Zhengzhou, Henan, China.
- Henan University People's Hospital, Zhengzhou, Henan, China.
- Department of Scientific Research and Discipline Construction, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| |
Collapse
|
14
|
Wang W, Wang X. A refocus on the advances of single-cell biomedicine. Cell Biol Toxicol 2020; 36:395-398. [PMID: 32779088 PMCID: PMC7417105 DOI: 10.1007/s10565-020-09551-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 12/26/2022]
Affiliation(s)
- William Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai, China.
| |
Collapse
|
15
|
Lim SB, Lim CT, Lim WT. Single-Cell Analysis of Circulating Tumor Cells: Why Heterogeneity Matters. Cancers (Basel) 2019; 11:cancers11101595. [PMID: 31635038 PMCID: PMC6826423 DOI: 10.3390/cancers11101595] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022] Open
Abstract
Unlike bulk-cell analysis, single-cell approaches have the advantage of assessing cellular heterogeneity that governs key aspects of tumor biology. Yet, their applications to circulating tumor cells (CTCs) are relatively limited, due mainly to the technical challenges resulting from extreme rarity of CTCs. Nevertheless, recent advances in microfluidics and immunoaffinity enrichment technologies along with sequencing platforms have fueled studies aiming to enrich, isolate, and sequence whole genomes of CTCs with high fidelity across various malignancies. Here, we review recent single-cell CTC (scCTC) sequencing efforts, and the integrated workflows, that have successfully characterized patient-derived CTCs. We examine how these studies uncover DNA alterations occurring at multiple molecular levels ranging from point mutations to chromosomal rearrangements from a single CTC, and discuss their cellular heterogeneity and clinical consequences. Finally, we highlight emerging strategies to address key challenges currently limiting the translation of these findings to clinical practice.
Collapse
Affiliation(s)
- Su Bin Lim
- NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore 117456, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.
| | - Chwee Teck Lim
- NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore 117456, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore.
| | - Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore.
- Office of Academic and Clinical Development, Duke-NUS Medical School, Singapore 169857, Singapore.
- IMCB NCC MPI Singapore Oncogenome Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore.
| |
Collapse
|
16
|
Abstract
As an alternative target to surgically resected tissue specimens, liquid biopsy has gained much attention over the past decade. Of the various circulating biomarkers, circulating tumor cells (CTCs) have particularly opened new windows into the metastatic cascade, with their functional, biochemical, and biophysical properties. Given the extreme rarity of intact CTCs and the associated technical challenges, however, analyses have been limited to bulk-cell strategies, missing out on clinically significant sources of information from cellular heterogeneity. With recent technological developments, it is now possible to probe genetic material of CTCs at the single-cell resolution to study spatial and temporal dynamics in circulation. Here, we discuss recent transcriptomic profiling efforts that enabled single-cell characterization of patient-derived CTCs spanning diverse cancer types. We further highlight how expression data of these putative biomarkers have advanced our understanding of metastatic spectrum and provided a basis for the development of CTC-based liquid biopsies to track, monitor, and predict the efficacy of therapy and any emergent resistance.
Collapse
|
17
|
Cruz A, Peng WK. Perspective: Cellular and Molecular Profiling Technologies in Personalized Oncology. J Pers Med 2019; 9:E44. [PMID: 31547284 PMCID: PMC6789676 DOI: 10.3390/jpm9030044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 02/08/2023] Open
Abstract
Cancer is a leading cause of death worldwide and therefore one of the most important public health concerns. In this contribution, we discuss recent key enabling technological innovations (and their challenges), including biomarker-based technologies, that potentially allow for decentralization (e.g., self-monitoring) with the increasing availability of point-of-care technologies in the near future. These technological innovations are moving the field one step closer toward personalized oncology.
Collapse
Affiliation(s)
- Andrea Cruz
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal.
| | - Weng Kung Peng
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal.
| |
Collapse
|
18
|
Addressing cellular heterogeneity in tumor and circulation for refined prognostication. Proc Natl Acad Sci U S A 2019; 116:17957-17962. [PMID: 31416912 PMCID: PMC6731691 DOI: 10.1073/pnas.1907904116] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Delineation of intratumor heterogeneity (ITH) has been a subject of growing interest for defining and tracking the evolution of cancer. Yet, the clinical consequences of such ITH on risk prediction remain unclear. Here we show ITH-driven variance on patient stratification and argue that the level of ITH of individual genes should be considered when developing single sector-based prognostic multigene tests (MGTs) in non–small-cell lung cancer (NSCLC). Single-cell molecular analysis of enriched, patient-derived circulating tumor cells (CTCs) further revealed predictive biomarkers for metastatic risk. Through systematic analysis of genes implicated in multiple steps of the metastatic spectrum, we demonstrate that the refined signatures achieve superior accuracy in identifying patients with early-stage disease at high risk of recurrence of NSCLC. Despite pronounced genomic and transcriptomic heterogeneity in non–small-cell lung cancer (NSCLC) not only between tumors, but also within a tumor, validation of clinically relevant gene signatures for prognostication has relied upon single-tissue samples, including 2 commercially available multigene tests (MGTs). Here we report an unanticipated impact of intratumor heterogeneity (ITH) on risk prediction of recurrence in NSCLC, underscoring the need for a better genomic strategy to refine prognostication. By leveraging label-free, inertial-focusing microfluidic approaches in retrieving circulating tumor cells (CTCs) at single-cell resolution, we further identified specific gene signatures with distinct expression profiles in CTCs from patients with differing metastatic potential. Notably, a refined prognostic risk model that reconciles the level of ITH and CTC-derived gene expression data outperformed the initial classifier in predicting recurrence-free survival (RFS). We propose tailored approaches to providing reliable risk estimates while accounting for ITH-driven variance in NSCLC.
Collapse
|
19
|
Zhang P, Zhou H, Lu K, Wang Y, Feng T. Circulating tumor cells in the clinical cancer diagnosis. Clin Transl Oncol 2019; 22:279-282. [DOI: 10.1007/s12094-019-02139-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022]
|