1
|
Li S, Siengdee P, Hadlich F, Trakooljul N, Oster M, Reyer H, Wimmers K, Ponsuksili S. Dynamics of DNA methylation during osteogenic differentiation of porcine synovial membrane mesenchymal stem cells from two metabolically distinct breeds. Epigenetics 2024; 19:2375011. [PMID: 38956836 PMCID: PMC11225923 DOI: 10.1080/15592294.2024.2375011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Mesenchymal stem cells (MSCs), with the ability to differentiate into osteoblasts, adipocytes, or chondrocytes, show evidence that the donor cell's metabolic type influences the osteogenic process. Limited knowledge exists on DNA methylation changes during osteogenic differentiation and the impact of diverse donor genetic backgrounds on MSC differentiation. In this study, synovial membrane mesenchymal stem cells (SMSCs) from two pig breeds (Angeln Saddleback, AS; German Landrace, DL) with distinct metabolic phenotypes were isolated, and the methylation pattern of SMSCs during osteogenic induction was investigated. Results showed that most differentially methylated regions (DMRs) were hypomethylated in osteogenic-induced SMSC group. These DMRs were enriched with genes of different osteogenic signalling pathways at different time points including Wnt, ECM, TGFB and BMP signalling pathways. AS pigs consistently exhibited a higher number of hypermethylated DMRs than DL pigs, particularly during the peak of osteogenesis (day 21). Predicting transcription factor motifs in regions of DMRs linked to osteogenic processes and donor breeds revealed influential motifs, including KLF1, NFATC3, ZNF148, ASCL1, FOXI1, and KLF5. These findings contribute to understanding the pattern of methylation changes promoting osteogenic differentiation, emphasizing the substantial role of donor the metabolic type and epigenetic memory of different donors on SMSC differentiation.
Collapse
Affiliation(s)
- Shuaichen Li
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Puntita Siengdee
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, 906 Kamphaeng Phet 6 Road, Lak-Si, Bangkok, Thailand
| | - Frieder Hadlich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Nares Trakooljul
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Michael Oster
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Henry Reyer
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Siriluck Ponsuksili
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
2
|
von Bibra C, Hinkel R. Non-human primate studies for cardiomyocyte transplantation-ready for translation? Front Pharmacol 2024; 15:1408679. [PMID: 38962314 PMCID: PMC11221829 DOI: 10.3389/fphar.2024.1408679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Non-human primates (NHP) are valuable models for late translational pre-clinical studies, often seen as a last step before clinical application. The unique similarity between NHPs and humans is often the subject of ethical concerns. However, it is precisely this analogy in anatomy, physiology, and the immune system that narrows the translational gap to other animal models in the cardiovascular field. Cell and gene therapy approaches are two dominant strategies investigated in the research field of cardiac regeneration. Focusing on the cell therapy approach, several xeno- and allogeneic cell transplantation studies with a translational motivation have been realized in macaque species. This is based on the pressing need for novel therapeutic options for heart failure patients. Stem cell-based remuscularization of the injured heart can be achieved via direct injection of cardiomyocytes (CMs) or patch application. Both CM delivery approaches are in the late preclinical stage, and the first clinical trials have started. However, are we already ready for the clinical area? The present review concentrates on CM transplantation studies conducted in NHPs, discusses the main sources and discoveries, and provides a perspective about human translation.
Collapse
Affiliation(s)
- Constantin von Bibra
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, Stiftung Tieraerztliche Hochschule Hannover, University of Veterinary Medicine, Hanover, Germany
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- DZHK (German Centre of Cardiovascular Research), Partner Site Lower Saxony, Goettingen, Germany
| | - Rabea Hinkel
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, Stiftung Tieraerztliche Hochschule Hannover, University of Veterinary Medicine, Hanover, Germany
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- DZHK (German Centre of Cardiovascular Research), Partner Site Lower Saxony, Goettingen, Germany
| |
Collapse
|
3
|
Abraham M, Kori I, Vishwakarma U, Goel S. Comprehensive assessment of goat adipose tissue-derived mesenchymal stem cells cultured in different media. Sci Rep 2024; 14:8380. [PMID: 38600175 PMCID: PMC11006890 DOI: 10.1038/s41598-024-58465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have demonstrated potential in treating livestock diseases that are unresponsive to conventional therapies. MSCs derived from goats, a valuable model for studying orthopaedic disorders in humans, offer insights into bone formation and regeneration. Adipose tissue-derived MSCs (ADSCs) are easily accessible and have a high capacity for expansion. Although the choice of culture media significantly influences the biological properties of MSCs, the optimal media for goat ADSCs (gADSCs) remains unclear. This study aimed to assess the effects of four commonly used culture media on gADSCs' culture characteristics, stem cell-specific immunophenotype, and differentiation. Results showed that MEM, DMEM/F12, and DMEM-LG were superior in maintaining cell morphology and culture parameters of gADSCs, such as cell adherence, metabolic activity, colony-forming potential, and population doubling. Conversely, DMEM-HG exhibited poor performance across all evaluated parameters. The gADSCs cultured in DMEM/F12 showed enhanced early proliferation and lower apoptosis. The cell surface marker distribution exhibited superior characteristics in gADSCs cultured in MEM and DMEM/F12. In contrast, the distribution was inferior in gADSCs cultured in DMEM-LG. DMEM/F12 and DMEM-LG culture media demonstrated a significantly higher potential for chondrogenic differentiation and DMEM-LG for osteogenic differentiation. In conclusion, DMEM/F12 is a suitable culture medium for propagating gADSCs as it effectively maintains cell morphology, growth parameters, proliferation and lower apoptosis while exhibiting desirable expression patterns of MSC-specific markers. These findings contribute to optimising culture conditions for gADSCs, enhancing their potential applications in disease treatment and regenerative medicine.
Collapse
Affiliation(s)
- Michelle Abraham
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
| | - Ibraz Kori
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| | - Utkarsha Vishwakarma
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| | - Sandeep Goel
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India.
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India.
| |
Collapse
|
4
|
Cardona-Ramirez S, Cook JL, Stoker AM, Ma R. Small laboratory animal models of anterior cruciate ligament reconstruction. J Orthop Res 2022; 40:1967-1980. [PMID: 35689508 DOI: 10.1002/jor.25395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/19/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
Anterior cruciate ligament (ACL) injuries are common knee ligament injuries. While generally successful, ACL reconstruction that uses a tendon graft to stabilize the knee is still associated with a notable percentage of failures and long-term morbidities. Preclinical research that uses small laboratory species (i.e., mice, rats, and rabbits) to model ACL reconstruction are important to evaluate factors that can impact graft incorporation or posttraumatic osteoarthritis after ACL reconstruction. Small animal ACL reconstruction models are also used for proof-of-concept studies for the development of emerging biological strategies aimed at improving ACL reconstruction healing. The objective of this review is to provide an overview on the use of common small animal laboratory species to model ACL reconstruction. The review includes a discussion on comparative knee anatomy, technical considerations including types of tendon grafts employed amongst the small laboratory species (i.e., mice, rats, and rabbits), and common laboratory evaluative methods used to study healing and outcomes after ACL reconstruction in small laboratory animals. The review will also highlight common research questions addressed with small animal models of ACL reconstruction.
Collapse
Affiliation(s)
- Sebastian Cardona-Ramirez
- Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri, USA
| | - James L Cook
- Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri, USA
| | - Aaron M Stoker
- Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri, USA
| | - Richard Ma
- Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
5
|
Cheng KC, Burdine RD, Dickinson ME, Ekker SC, Lin AY, Lloyd KCK, Lutz CM, MacRae CA, Morrison JH, O'Connor DH, Postlethwait JH, Rogers CD, Sanchez S, Simpson JH, Talbot WS, Wallace DC, Weimer JM, Bellen HJ. Promoting validation and cross-phylogenetic integration in model organism research. Dis Model Mech 2022; 15:dmm049600. [PMID: 36125045 PMCID: PMC9531892 DOI: 10.1242/dmm.049600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Model organism (MO) research provides a basic understanding of biology and disease due to the evolutionary conservation of the molecular and cellular language of life. MOs have been used to identify and understand the function of orthologous genes, proteins, cells and tissues involved in biological processes, to develop and evaluate techniques and methods, and to perform whole-organism-based chemical screens to test drug efficacy and toxicity. However, a growing richness of datasets and the rising power of computation raise an important question: How do we maximize the value of MOs? In-depth discussions in over 50 virtual presentations organized by the National Institutes of Health across more than 10 weeks yielded important suggestions for improving the rigor, validation, reproducibility and translatability of MO research. The effort clarified challenges and opportunities for developing and integrating tools and resources. Maintenance of critical existing infrastructure and the implementation of suggested improvements will play important roles in maintaining productivity and facilitating the validation of animal models of human biology and disease.
Collapse
Affiliation(s)
- Keith C. Cheng
- Department of Pathology, Penn State College of Medicine, Hershey, PA 17033, USA
- Institute for Computational and Data Sciences, Pennsylvania State University, Park, PA 16802, USA
| | - Rebecca D. Burdine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77007, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77007, USA
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55906, USA
| | - Alex Y. Lin
- Department of Pathology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - K. C. Kent Lloyd
- Mouse Biology Program, School of Medicinel, University of California Davis, Davis, CA 95618, USA
- Department of Surgery, School of Medicine, University of California Davis, Davis, CA 95618, USA
| | - Cathleen M. Lutz
- The Jackson Laboratory, Genetic Resource Science, Bar Harbor, ME 04609, USA
| | - Calum A. MacRae
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 360 Longwood Avenue, Boston, MA 02215, USA
| | - John H. Morrison
- California National Primate Research Center, University of California Davis, Davis, CA 95616, USA
- Department of Neurology, University of California Davis, Davis, CA 95616, USA
| | - David H. O'Connor
- Department of Pathology and Laboratory Medicine, University ofWisconsin-Madison, Madison, WI 53711, USA
| | | | - Crystal D. Rogers
- School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Susan Sanchez
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| | - Julie H. Simpson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA 93117, USA
| | - William S. Talbot
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Douglas C. Wallace
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Neurological Research Institute (TCH), Baylor College of Medicine, Houston, TX 77007, USA
| |
Collapse
|
6
|
Wang Y, Wei J, Zhang P, Zhang X, Wang Y, Chen W, Zhao Y, Cui X. Neuregulin-1, a potential therapeutic target for cardiac repair. Front Pharmacol 2022; 13:945206. [PMID: 36120374 PMCID: PMC9471952 DOI: 10.3389/fphar.2022.945206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
NRG1 (Neuregulin-1) is an effective cardiomyocyte proliferator, secreted and released by endothelial vascular cells, and affects the cardiovascular system. It plays a major role in heart growth, proliferation, differentiation, apoptosis, and other cardiovascular processes. Numerous experiments have shown that NRG1 can repair the heart in the pathophysiology of atherosclerosis, myocardial infarction, ischemia reperfusion, heart failure, cardiomyopathy and other cardiovascular diseases. NRG1 can connect related signaling pathways through the NRG1/ErbB pathway, which form signal cascades to improve the myocardial microenvironment, such as regulating cardiac inflammation, oxidative stress, necrotic apoptosis. Here, we summarize recent research advances on the molecular mechanisms of NRG1, elucidate the contribution of NRG1 to cardiovascular disease, discuss therapeutic approaches targeting NRG1 associated with cardiovascular disease, and highlight areas for future research.
Collapse
Affiliation(s)
- Yan Wang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jianliang Wei
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Peng Zhang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xin Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yifei Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenjing Chen
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanan Zhao
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- *Correspondence: Yanan Zhao, ; Xiangning Cui,
| | - Xiangning Cui
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanan Zhao, ; Xiangning Cui,
| |
Collapse
|
7
|
Dias IE, Viegas CA, Requicha JF, Saavedra MJ, Azevedo JM, Carvalho PP, Dias IR. Mesenchymal Stem Cell Studies in the Goat Model for Biomedical Research-A Review of the Scientific Literature. BIOLOGY 2022; 11:1276. [PMID: 36138755 PMCID: PMC9495984 DOI: 10.3390/biology11091276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells, defined by their ability to self-renew, while maintaining the capacity to differentiate into different cellular lineages, presumably from their own germinal layer. MSCs therapy is based on its anti-inflammatory, immunomodulatory, and regenerative potential. Firstly, they can differentiate into the target cell type, allowing them to regenerate the damaged area. Secondly, they have a great immunomodulatory capacity through paracrine effects (by secreting several cytokines and growth factors to adjacent cells) and by cell-to-cell contact, leading to vascularization, cellular proliferation in wounded tissues, and reducing inflammation. Currently, MSCs are being widely investigated for numerous tissue engineering and regenerative medicine applications. Appropriate animal models are crucial for the development and evaluation of regenerative medicine-based treatments and eventual treatments for debilitating diseases with the hope of application in upcoming human clinical trials. Here, we summarize the latest research focused on studying the biological and therapeutic potential of MSCs in the goat model, namely in the fields of orthopedics, dermatology, ophthalmology, dentistry, pneumology, cardiology, and urology fields.
Collapse
Affiliation(s)
- Inês E. Dias
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
| | - Carlos A. Viegas
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- CECAV—Centre for Animal Sciences and Veterinary Studies, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
| | - João F. Requicha
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- CECAV—Centre for Animal Sciences and Veterinary Studies, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
| | - Maria J. Saavedra
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Jorge M. Azevedo
- CECAV—Centre for Animal Sciences and Veterinary Studies, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
- Department of Animal Science, ECAV, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Pedro P. Carvalho
- CIVG—Vasco da Gama Research Center, University School Vasco da Gama (EUVG), Av. José R. Sousa Fernandes, Campus Universitário, Lordemão, 3020-210 Coimbra, Portugal
- Vetherapy—Research and Development in Biotechnology, 3020-210 Coimbra, Portugal
| | - Isabel R. Dias
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- CECAV—Centre for Animal Sciences and Veterinary Studies, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
| |
Collapse
|
8
|
Zaki S, Blaker CL, Little CB. OA foundations - experimental models of osteoarthritis. Osteoarthritis Cartilage 2022; 30:357-380. [PMID: 34536528 DOI: 10.1016/j.joca.2021.03.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is increasingly recognised as a disease of diverse phenotypes with variable clinical presentation, progression, and response to therapeutic intervention. This same diversity is readily apparent in the many animal models of OA. However, model selection, study design, and interpretation of resultant findings, are not routinely done in the context of the target human (or veterinary) patient OA sub-population or phenotype. This review discusses the selection and use of animal models of OA in discovery and therapeutic-development research. Beyond evaluation of the different animal models on offer, this review suggests focussing the approach to OA-animal model selection on study objective(s), alignment of available models with OA-patient sub-types, and the resources available to achieve valid and translatable results. How this approach impacts model selection is discussed and an experimental design checklist for selecting the optimal model(s) is proposed. This approach should act as a guide to new researchers and a reminder to those already in the field, as to issues that need to be considered before embarking on in vivo pre-clinical research. The ultimate purpose of using an OA animal model is to provide the best possible evidence if, how, when and where a molecule, pathway, cell or process is important in clinical disease. By definition this requires both model and study outcomes to align with and be predictive of outcomes in patients. Keeping this at the forefront of research using pre-clinical OA models, will go a long way to improving the quality of evidence and its translational value.
Collapse
Affiliation(s)
- S Zaki
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Australia; Raymond Purves Bone and Joint Research Laboratory, Australia.
| | - C L Blaker
- Raymond Purves Bone and Joint Research Laboratory, Australia; Murray Maxwell Biomechanics Laboratory, The Kolling Institute, University of Sydney Faculty of Medicine and Health, At Royal North Shore Hospital, Australia.
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratory, Australia.
| |
Collapse
|
9
|
Martínez-Falguera D, Iborra-Egea O, Gálvez-Montón C. iPSC Therapy for Myocardial Infarction in Large Animal Models: Land of Hope and Dreams. Biomedicines 2021; 9:1836. [PMID: 34944652 PMCID: PMC8698445 DOI: 10.3390/biomedicines9121836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Myocardial infarction is the main driver of heart failure due to ischemia and subsequent cell death, and cell-based strategies have emerged as promising therapeutic methods to replace dead tissue in cardiovascular diseases. Research in this field has been dramatically advanced by the development of laboratory-induced pluripotent stem cells (iPSCs) that harbor the capability to become any cell type. Like other experimental strategies, stem cell therapy must meet multiple requirements before reaching the clinical trial phase, and in vivo models are indispensable for ensuring the safety of such novel therapies. Specifically, translational studies in large animal models are necessary to fully evaluate the therapeutic potential of this approach; to empirically determine the optimal combination of cell types, supplementary factors, and delivery methods to maximize efficacy; and to stringently assess safety. In the present review, we summarize the main strategies employed to generate iPSCs and differentiate them into cardiomyocytes in large animal species; the most critical differences between using small versus large animal models for cardiovascular studies; and the strategies that have been pursued regarding implanted cells' stage of differentiation, origin, and technical application.
Collapse
Affiliation(s)
- Daina Martínez-Falguera
- Faculty of Medicine, University of Barcelona (UB), 08036 Barcelona, Spain;
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Oriol Iborra-Egea
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Carolina Gálvez-Montón
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| |
Collapse
|
10
|
Nguyen TH, Duong CM, Nguyen XH, Than UTT. Mesenchymal Stem Cell-Derived Extracellular Vesicles for Osteoarthritis Treatment: Extracellular Matrix Protection, Chondrocyte and Osteocyte Physiology, Pain and Inflammation Management. Cells 2021; 10:2887. [PMID: 34831109 PMCID: PMC8616200 DOI: 10.3390/cells10112887] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative disease that can lead to persistent pain and motion restriction. In the last decade, stem cells, particularly mesenchymal stem cells (MSCs), have been explored as a potential alternative OA therapy due to their regenerative capacity. Furthermore, it has been shown that trophic factors enveloped in extracellular vesicles (EVs), including exosomes, are a crucial aspect of MSC-based treatment for OA. Evidently, EVs derived from different MSC sources might rescue the OA phenotype by targeting many biological processes associated with cartilage extracellular matrix (ECM) degradation and exerting protective effects on different joint cell types. Despite this advancement, different studies employing EV treatment for OA have revealed reverse outcomes depending on the EV cargo, cell source, and pathological condition. Hence, in this review, we aim to summarize and discuss the possible effects of MSC-derived EVs based on recent findings at different stages of OA development, including effects on cartilage ECM, chondrocyte biology, osteocytes and bone homeostasis, inflammation, and pain management. Additionally, we discuss further strategies and technical advances for manipulating EVs to specifically target OA to bring the therapy closer to clinical use.
Collapse
Affiliation(s)
- Thu Huyen Nguyen
- Department of Bioscience, University of Milan, 20133 Milan, Italy;
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam; (C.M.D.); (X.-H.N.)
| | - Chau Minh Duong
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam; (C.M.D.); (X.-H.N.)
- Department of Biology, Clark University, Worcester, MA 01610, USA
| | - Xuan-Hung Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam; (C.M.D.); (X.-H.N.)
- Vinmec Research Institute of Applied Sciences and Regenerative Medicine, Vinmec Healthcare System, Hanoi 100000, Vietnam
- College of Health Sciences, VinUniversity, Hanoi 100000, Vietnam
| | - Uyen Thi Trang Than
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam; (C.M.D.); (X.-H.N.)
- Vinmec Research Institute of Applied Sciences and Regenerative Medicine, Vinmec Healthcare System, Hanoi 100000, Vietnam
| |
Collapse
|
11
|
Xu Y, Peng W, Han D, Feng F, Wang Z, Gu C, Zhou X, Wu Q. Maiwei Yangfei decoction prevents bleomycin-induced pulmonary fibrosis in mice. Exp Ther Med 2021; 22:1306. [PMID: 34630661 PMCID: PMC8461617 DOI: 10.3892/etm.2021.10741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
Maiwei Yangfei (MWYF) is a compound Chinese herb that is safe and effective in the clinical setting in patients with pulmonary fibrosis (PF). The aim of the present study was to assess the role of a (MWYF) decoction in a bleomycin (BLM)-induced PF mouse model and to investigate the underlying functional mechanism. Chemical components within the MWYF decoction were analysed using liquid chromatography-mass spectrometry. A total of 50 C57BL/6 mice were randomly assigned to one of the following five groups with 10 mice per group: Control, model, low dose MWYF (20 g/kg), medium dose MWYF (40 g/kg) and high dose MWYF (60 g/kg). A mouse PF model was established by the tracheal instillation of BLM (5 mg/kg) prior to MWYF treatment, except for mice in the control group. After 21 days of treatment with MWYF, the mice were sacrificed and the body weights were recorded. In addition, pulmonary tissues and bronchial alveolar lavage fluid were collected. TNF-α, IL-6, IL-17, hydroxyproline, pyridinoline and collagen I levels were determined using ELISA. Vimentin, α-smooth muscle actin (α-SMA), fibronectin, TGF-β1, Smad3, TNF-α, IL-6, IL-17, collagen I and collagen III were determined using western blotting. Vimentin and α-SMA levels were also determined using immunofluorescence analysis. Collagens I and III were detected using immunohistochemical analysis and TGF-β1 and Smad3 levels were determined using reverse transcription-quantitative PCR. Following treatment with MWYF decoction, the body weight of the mice in the PF group increased, the degree of pulmonary alveolitis and PF was reduced, collagen levels were reduced and the expression levels of α-SMA, vimentin and fibronectin were decreased. Although both protein and mRNA expression levels of TGF-β1 and Smad3 were reduced, they remained higher than those observed in the control group. To conclude, MWYF decoction delayed the development of BLM-induced PF in mice, where the functional mechanism was likely associated with the TGF-β1/Smad3 signalling pathway.
Collapse
Affiliation(s)
- Yong Xu
- Department of Respiratory and Critical Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Wenpan Peng
- Department of Respiratory and Critical Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Di Han
- Department of Respiratory and Critical Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Fanchao Feng
- Department of Respiratory and Critical Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China.,Department of Respiratory and Critical Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Zhichao Wang
- Department of Respiratory and Critical Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Cheng Gu
- Department of Respiratory and Critical Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Xianmei Zhou
- Department of Respiratory and Critical Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China.,Department of Respiratory and Critical Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Qi Wu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
12
|
Abstract
Animal models provide the link between in vitro research and the first in-man application during clinical trials. They provide substantial information in preclinical studies for the assessment of new therapeutic interventions in advance of human clinical trials. However, each model has its advantages and limitations in the ability to imitate specific pathomechanisms. Therefore, the selection of an animal model for the evaluation of a specific research question or evaluation of a novel therapeutic strategy requires a precise analysis. Transplantation research is a discipline that largely benefits from the use of animal models with mouse and pig models being the most frequently used models in organ transplantation research. A suitable animal model should reflect best the situation in humans, and the researcher should be aware of the similarities as well as the limitations of the chosen model. Small animal models with rats and mice are contributing to the majority of animal experiments with the obvious advantages of these models being easy handling, low costs, and high reproductive rates. However, unfortunately, they often do not translate to clinical use. Large animal models, especially in transplantation medicine, are an important element for establishing preclinical models that do often translate to the clinic. Nevertheless, they can be costly, present increased regulatory requirements, and often are of high ethical concern. Therefore, it is crucial to select the right animal model from which extrapolations and valid conclusions can be obtained and translated into the human situation. This review provides an overview in the models frequently used in organ transplantation research.
Collapse
|
13
|
Nino-Fong R, Esparza Gonzalez BP, Rodriguez-Lecompte JC, Montelpare W, McDuffee L. Development of a biologically immortalized equine stem cell line. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2021; 85:293-301. [PMID: 34602734 PMCID: PMC8451704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/16/2021] [Indexed: 06/13/2023]
Abstract
Bone repair in horses implies invasive surgeries and increased cost. Research on musculoskeletal disorders therapy in horses includes cell-based therapy with mesenchymal stromal cells (MSCs). Mesenchymal stromal cells can be obtained from bone marrow (BMMSCs). Unfortunately, BMMSCs have limited cell replication in vitro. The objective of this study was to develop a biologically immortalized equine stem cell line derived from bone marrow, with unlimited in-vitro proliferation and the ability to differentiate into bone cells. Equine BMMSCs were transfected and immortalized with human telomerase reverse transcriptase (hTERT) gene. Cell passages from equine immortal BMMSCs were characterized by the presence of stemness CD markers and expression of multi-potent differentiation genes (OCT-4, SOX2, and NANOG). Equine immortal BMMSCs were incubated in osteogenic medium and bone cell differentiation was determined by alkaline phosphatase and von Kossa staining, and osteogenic gene expression (osteocalcin, Runx2, and osterix). Telomerase activity was determined by telomeric repeat amplification technique. Results showed that equine immortal BMMSCs were able to replicate in-vitro up to passage 50 and maintain stem cell characteristics by the presence of CD90 and expression of multi-potent genes. Equine immortal BMMSCs were able to differentiate into bone cells, which was confirmed by the positive osteogenic staining and gene expression. Equine BMMSCs were successfully immortalized and maintained characteristics of stem cells and readily differentiated into osteogenic cells. Extending the life span of equine BMMSCs by transfection of the hTERT gene will revolutionize the clinical use of MSCs by making them available to orthopedic surgeons "off the shelf."
Collapse
Affiliation(s)
- Rodolfo Nino-Fong
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, New York 11548, USA (Nino-Fong); Department of Health Management (Esparza Gonzalez, McDuffee), Department of Pathology and Microbiology (Rodriguez-Lecompte), and Department of Applied Human Sciences (Montelpare), Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island C1A 4P3
| | - Blanca P Esparza Gonzalez
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, New York 11548, USA (Nino-Fong); Department of Health Management (Esparza Gonzalez, McDuffee), Department of Pathology and Microbiology (Rodriguez-Lecompte), and Department of Applied Human Sciences (Montelpare), Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island C1A 4P3
| | - Juan Carlos Rodriguez-Lecompte
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, New York 11548, USA (Nino-Fong); Department of Health Management (Esparza Gonzalez, McDuffee), Department of Pathology and Microbiology (Rodriguez-Lecompte), and Department of Applied Human Sciences (Montelpare), Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island C1A 4P3
| | - William Montelpare
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, New York 11548, USA (Nino-Fong); Department of Health Management (Esparza Gonzalez, McDuffee), Department of Pathology and Microbiology (Rodriguez-Lecompte), and Department of Applied Human Sciences (Montelpare), Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island C1A 4P3
| | - Laurie McDuffee
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, New York 11548, USA (Nino-Fong); Department of Health Management (Esparza Gonzalez, McDuffee), Department of Pathology and Microbiology (Rodriguez-Lecompte), and Department of Applied Human Sciences (Montelpare), Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island C1A 4P3
| |
Collapse
|
14
|
Gromolak S, Krawczenko A, Antończyk A, Buczak K, Kiełbowicz Z, Klimczak A. Biological Characteristics and Osteogenic Differentiation of Ovine Bone Marrow Derived Mesenchymal Stem Cells Stimulated with FGF-2 and BMP-2. Int J Mol Sci 2020; 21:E9726. [PMID: 33419255 PMCID: PMC7766718 DOI: 10.3390/ijms21249726] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Cell-based therapies using mesenchymal stem cells (MSCs) are a promising tool in bone tissue engineering. Bone regeneration with MSCs involves a series of molecular processes leading to the activation of the osteoinductive cascade supported by bioactive factors, including fibroblast growth factor-2 (FGF-2) and bone morphogenetic protein-2 (BMP-2). In this study, we examined the biological characteristics and osteogenic differentiation potential of sheep bone marrow MSCs (BM-MSCs) treated with 20 ng/mL of FGF-2 and 100 ng/mL BMP-2 in vitro. The biological properties of osteogenic-induced BM-MSCs were investigated by assessing their morphology, proliferation, phenotype, and cytokine secretory profile. The osteogenic differentiation was characterized by Alizarin Red S staining, immunofluorescent staining of osteocalcin and collagen type I, and expression levels of genetic markers of osteogenesis. The results demonstrated that BM-MSCs treated with FGF-2 and BMP-2 maintained their primary MSC properties and improved their osteogenic differentiation capacity, as confirmed by increased expression of osteocalcin and collagen type I and upregulation of osteogenic-related gene markers BMP-2, Runx2, osterix, collagen type I, osteocalcin, and osteopontin. Furthermore, sheep BM-MSCs produced a variety of bioactive factors involved in osteogenesis, and supplementation of the culture medium with FGF-2 and BMP-2 affected the secretome profile of the cells. The results suggest that sheep osteogenic-induced BM-MSCs may be used as a cellular therapy to study bone repair in the preclinical large animal model.
Collapse
Affiliation(s)
- Sandra Gromolak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (S.G.); (A.K.)
| | - Agnieszka Krawczenko
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (S.G.); (A.K.)
| | - Agnieszka Antończyk
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 51, 50-366 Wroclaw, Poland; (A.A.); (K.B.); (Z.K.)
| | - Krzysztof Buczak
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 51, 50-366 Wroclaw, Poland; (A.A.); (K.B.); (Z.K.)
| | - Zdzisław Kiełbowicz
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 51, 50-366 Wroclaw, Poland; (A.A.); (K.B.); (Z.K.)
| | - Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (S.G.); (A.K.)
| |
Collapse
|