1
|
Ji C, Pan Y, Liu B, Liu J, Zhao C, Nie Z, Liao S, Kuang G, Wu X, Liu Q, Ning J, Tang Y, Fang L. Thioredoxin C of Streptococcus suis serotype 2 contributes to virulence by inducing antioxidative stress and inhibiting autophagy via the MSR1/PI3K-Akt-mTOR pathway in macrophages. Vet Microbiol 2024; 298:110263. [PMID: 39332163 DOI: 10.1016/j.vetmic.2024.110263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
The thioredoxin (Trx) system plays a vital role in protecting against oxidative stress and ensures correct disulfide bonding to maintain protein function. Our previous research demonstrated that TrxA of Streptococcus suis Serotype 2 (SS2), a clinical strain from the lung of a diseased pig, contributes to virulence but is not involved in antioxidative stress. In this study, we identified another gene in the Trx family, TrxC, which encodes a protein of 104 amino acids with a CGDC active motif and 22.4 % amino acid sequence homology with TrxA. Unlike the TrxA, TrxC mutant strains were more susceptible to oxidative stresses induced by hydrogen peroxide and paraquat. In vitro experiments, the survival rate of the TrxC deletion mutant in RAW264.7 macrophages was only one-eighth of that of TrxA mutant strains. Transcriptome analysis revealed that autophagy-related genes were significantly upregulated in the TrxC mutant compared to those in the wild-type or TrxA mutant strains. Co-localization of LC3 puncta with TrxC was confirmed using laser confocal microscopy, and autophagy-related indicators were quantified using western blotting. Autophagy deficiency induced by ATG5 knockout significantly increased SS2 survival rate, especially in TrxC mutant strains. For the upstream signal regulation pathways, we found ΔTrxC strains regulate autophagy by activation of PI3K/Akt/mTOR signaling in RAW264.7 macrophages. In the Akt1-overexpressing cell line, ΔTrxC infection significantly decreased the autophagic response and promoted ΔTrxC mutant strain survival, while inhibition of Akt with MK2206 resulted in reduced ΔTrxC mutant strain survival and enhance the autophagic response. Furthermore, loss of TrxC increased the activity of MSR1, thereby inducing cellular autophagy and phagocytosis. Our data demonstrate that TrxC of SS2 contributes to virulence by inducing antioxidative stress and inhibits autophagy via the PI3K-Akt-mTOR pathway in macrophages, with MSR1 acting as a key factor in controlling infection.
Collapse
Affiliation(s)
- Chunxiao Ji
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Yanying Pan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Bocheng Liu
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China
| | - Jianying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Chijun Zhao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Zhuyuan Nie
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Simeng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Guangwei Kuang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xin Wu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Quan Liu
- School of Life Science and Engineering, Foshan University, Guangdong 528225, China
| | - Jie Ning
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Yulong Tang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Lihua Fang
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China; School of Life Science and Engineering, Foshan University, Guangdong 528225, China.
| |
Collapse
|
2
|
Shilenok I, Kobzeva K, Deykin A, Pokrovsky V, Patrakhanov E, Bushueva O. Obesity and Environmental Risk Factors Significantly Modify the Association between Ischemic Stroke and the Hero Chaperone C19orf53. Life (Basel) 2024; 14:1158. [PMID: 39337941 PMCID: PMC11433390 DOI: 10.3390/life14091158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The unique chaperone-like properties of C19orf53, discovered in 2020 as a "hero" protein, make it an intriguing subject for research in relation to ischemic stroke (IS). Our pilot study aimed to investigate whether C19orf53 SNPs are associated with IS. DNA samples from 2138 Russian subjects (947 IS and 1308 controls) were genotyped for 7 C19orf53 SNPs using probe-based PCR. Dominant (D), recessive (R), and log-additive (A) regression models in relation to the effect alleles (EA) were used to interpret associations. An increased risk of IS was associated with rs10104 (EA G; Pbonf(R) = 0.0009; Pbonf(A) = 0.0004), rs11666524 (EA A; Pbonf(R) = 0.003; Pbonf(A) = 0.02), rs346158 (EA C; Pbonf(R) = 0.006; Pbonf(A) = 0.045), and rs2277947 (EA A; Pbonf(R) = 0.002; Pbonf(A) = 0.01) in patients with obesity; with rs11666524 (EA A; Pbonf(R) = 0.02), rs346157 (EA G; Pbonf(R) = 0.036), rs346158 (EA C; Pbonf(R) = 0.005), and rs2277947 (EA A; Pbonf(R) = 0.02) in patients with low fruit and vegetable intake; and with rs10104 (EA G; Pbonf(R) = 0.03) and rs11666524 (EA A; Pbonf(R) = 0.048) in patients with low physical activity. In conclusion, our pilot study provides comprehensive genetic and bioinformatic evidence of the involvement of C19orf53 in IS risk.
Collapse
Affiliation(s)
- Irina Shilenok
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Division of Neurology, Kursk Emergency Hospital, 305035 Kursk, Russia
| | - Ksenia Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Alexey Deykin
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, 308015 Belgorod, Russia
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Vladimir Pokrovsky
- Laboratory of Genetic Technologies and Gene Editing for Biomedicine and Veterinary Medicine, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Evgeny Patrakhanov
- Laboratory of Genetic Technologies and Gene Editing for Biomedicine and Veterinary Medicine, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia
| |
Collapse
|
3
|
Meyers S, Demeyer S, Cools J. CRISPR screening in hematology research: from bulk to single-cell level. J Hematol Oncol 2023; 16:107. [PMID: 37875911 PMCID: PMC10594891 DOI: 10.1186/s13045-023-01495-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/21/2023] [Indexed: 10/26/2023] Open
Abstract
The CRISPR genome editing technology has revolutionized the way gene function is studied. Genome editing can be achieved in single genes or for thousands of genes simultaneously in sensitive genetic screens. While conventional genetic screens are limited to bulk measurements of cell behavior, recent developments in single-cell technologies make it possible to combine CRISPR screening with single-cell profiling. In this way, cell behavior and gene expression can be monitored simultaneously, with the additional possibility of including data on chromatin accessibility and protein levels. Moreover, the availability of various Cas proteins leading to inactivation, activation, or other effects on gene function further broadens the scope of such screens. The integration of single-cell multi-omics approaches with CRISPR screening open the path to high-content information on the impact of genetic perturbations at single-cell resolution. Current limitations in cell throughput and data density need to be taken into consideration, but new technologies are rapidly evolving and are likely to easily overcome these limitations. In this review, we discuss the use of bulk CRISPR screening in hematology research, as well as the emergence of single-cell CRISPR screening and its added value to the field.
Collapse
Affiliation(s)
- Sarah Meyers
- Center for Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | - Sofie Demeyer
- Center for Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | - Jan Cools
- Center for Human Genetics, KU Leuven, Leuven, Belgium.
- Center for Cancer Biology, VIB, Leuven, Belgium.
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Ershov P, Yablokov E, Mezentsev Y, Ivanov A. Uncharacterized Proteins CxORFx: Subinteractome Analysis and Prognostic Significance in Cancers. Int J Mol Sci 2023; 24:10190. [PMID: 37373333 DOI: 10.3390/ijms241210190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Functions of about 10% of all the proteins and their associations with diseases are poorly annotated or not annotated at all. Among these proteins, there is a group of uncharacterized chromosome-specific open-reading frame genes (CxORFx) from the 'Tdark' category. The aim of the work was to reveal associations of CxORFx gene expression and ORF proteins' subinteractomes with cancer-driven cellular processes and molecular pathways. We performed systems biology and bioinformatic analysis of 219 differentially expressed CxORFx genes in cancers, an estimation of prognostic significance of novel transcriptomic signatures and analysis of subinteractome composition using several web servers (GEPIA2, KMplotter, ROC-plotter, TIMER, cBioPortal, DepMap, EnrichR, PepPSy, cProSite, WebGestalt, CancerGeneNet, PathwAX II and FunCoup). The subinteractome of each ORF protein was revealed using ten different data sources on physical protein-protein interactions (PPIs) to obtain representative datasets for the exploration of possible cellular functions of ORF proteins through a spectrum of neighboring annotated protein partners. A total of 42 out of 219 presumably cancer-associated ORF proteins and 30 cancer-dependent binary PPIs were found. Additionally, a bibliometric analysis of 204 publications allowed us to retrieve biomedical terms related to ORF genes. In spite of recent progress in functional studies of ORF genes, the current investigations aim at finding out the prognostic value of CxORFx expression patterns in cancers. The results obtained expand the understanding of the possible functions of the poorly annotated CxORFx in the cancer context.
Collapse
Affiliation(s)
- Pavel Ershov
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | | | - Yuri Mezentsev
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Alexis Ivanov
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| |
Collapse
|
5
|
Tang Y, Liao S, Nie Z, Kuang G, Ji C, Wan D, He L, Li F, Kong X, Zhan K, Tan B, Wu X, Yin Y. CRISPR-activation screen identified potassium channels for protection against mycotoxins through cell cycle progression and mitochondrial function. Cell Stress 2023; 7:34-45. [PMID: 37152664 PMCID: PMC10157994 DOI: 10.15698/cst2023.05.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/02/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
Zearalenone (ZEA) exposure has carcinogenic effects on human and animal health by exhibiting intestinal, hepatic, and renal toxicity. At present, the underlying mechanisms on how ZEA induces apoptosis and damage to tissues still remain unclear. In this study, we aimed to identify genes that modulate the cellular response to ZEA using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 screening, and further validate novel gene functions to elucidate molecular mechanisms underlying particular biological processes in vivo and in vitro. Two ZEA-resistant cell lines, designated Ov-KCNJ4 and Ov-KCNJ12, were yielded by CRISPR activation screening which had significant changes in ZEA resistance and growth rates. Results showed that ZEA could interact with the cell membrane proteins KCNJ4 and KCNJ12, inducing cell cycle arrest, disruption of DNA replication and base excision repair. Overexpression of KCNJ4 and KCNJ12 was involved in ZEA resistance by regulating cell cycle to neutralize toxicity, sustaining mitochondrial morphology and function via attenuating the damage from oxidative stress in the KCNJ4-mitoKATP pathway. In vivo experiments showed that AAV-KCNJ4 delivery significantly improved ZEA-induced renal impairment and increased antioxidative enzyme activity by improving mitochondrial function. Our findings suggest that increasing potassium channel levels may be a putative therapeutic target for mycotoxin-induced damage.
Collapse
Affiliation(s)
- Yulong Tang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, 230001, China
- * Corresponding Author: Yulong Tang, Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; E-mail:
| | - Simeng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Zhuyuan Nie
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Guangwei Kuang
- Hunan Provincial Institute of Animal Drug and Feed Supervision, Changsha, 410006, China
| | - Chunxiao Ji
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Liuqin He
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Fengna Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xiangfeng Kong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Kai Zhan
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, 230001, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xin Wu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- * Corresponding Author: Xin Wu, Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; E-mail:
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
6
|
Cheng J, Lin G, Wang T, Wang Y, Guo W, Liao J, Yang P, Chen J, Shao X, Lu X, Zhu L, Wang Y, Fan X. Massively Parallel CRISPR-Based Genetic Perturbation Screening at Single-Cell Resolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204484. [PMID: 36504444 PMCID: PMC9896079 DOI: 10.1002/advs.202204484] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/09/2022] [Indexed: 06/17/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-based genetic screening has been demonstrated as a powerful approach for unbiased functional genomics research. Single-cell CRISPR screening (scCRISPR) techniques, which result from the combination of single-cell toolkits and CRISPR screening, allow dissecting regulatory networks in complex biological systems at unprecedented resolution. These methods allow cells to be perturbed en masse using a pooled CRISPR library, followed by high-content phenotyping. This is technically accomplished by annotating cells with sgRNA-specific barcodes or directly detectable sgRNAs. According to the integration of distinct single-cell technologies, these methods principally fall into four categories: scCRISPR with RNA-seq, scCRISPR with ATAC-seq, scCRISPR with proteome probing, and imaging-based scCRISPR. scCRISPR has deciphered genotype-phenotype relationships, genetic regulations, tumor biological issues, and neuropathological mechanisms. This review provides insight into the technical breakthrough of scCRISPR by systematically summarizing the advancements of various scCRISPR methodologies and analyzing their merits and limitations. In addition, an application-oriented approach guide is offered to meet researchers' individualized demands.
Collapse
Affiliation(s)
- Junyun Cheng
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Gaole Lin
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Tianhao Wang
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Yunzhu Wang
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Wenbo Guo
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Jie Liao
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Penghui Yang
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Jie Chen
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Xin Shao
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Xiaoyan Lu
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
- State Key Laboratory of Component‐Based Chinese MedicineInnovation Center in Zhejiang UniversityHangzhou310058China
- Jinhua Institute of Zhejiang UniversityJinhua321016China
| | - Ling Zhu
- The Save Sight InstituteFaculty of Medicine and Healththe University of SydneySydneyNSW2000Australia
| | - Yi Wang
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
- State Key Laboratory of Component‐Based Chinese MedicineInnovation Center in Zhejiang UniversityHangzhou310058China
- Future Health LaboratoryInnovation Center of Yangtze River DeltaZhejiang UniversityJiaxing314100China
| | - Xiaohui Fan
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
- State Key Laboratory of Component‐Based Chinese MedicineInnovation Center in Zhejiang UniversityHangzhou310058China
- Jinhua Institute of Zhejiang UniversityJinhua321016China
- The Save Sight InstituteFaculty of Medicine and Healththe University of SydneySydneyNSW2000Australia
- Future Health LaboratoryInnovation Center of Yangtze River DeltaZhejiang UniversityJiaxing314100China
- Westlake Laboratory of Life Sciences and BiomedicineHangzhou310024China
| |
Collapse
|
7
|
Liao S, Liu G, Tan B, Qi M, Wu X, Li J, Li X, Zhu C, Huang J, Zhang S, Tang Y, Yin Y. Dietary zero-dimensional fullerene supplementation improves the meat quality, lipid metabolism, muscle fiber characteristics, and antioxidative status in finishing pigs. ANIMAL NUTRITION 2022; 11:171-180. [PMID: 36254219 PMCID: PMC9550521 DOI: 10.1016/j.aninu.2022.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/27/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022]
Abstract
With the increasing demand for high-quality pork, more nutritional substances have been studied for the regulation of meat quality. Zero-dimensional fullerenes (C60) can modulate the biological behavior of a variety of cell lines and animals. In this study, we report the biological effects of C60 on finishing pigs at different concentrations. A total of 24 barrows (Duroc × Large White × Landrace), with an average body weight of 21.01 ± 0.98 kg, were divided into 3 groups and each treated daily with C60 (100 or 200 mg per kg feed) or a control diet until the end of the experiment. Our results showed that dietary C60 supplementation improved flesh color, marbling scores, and flavor amino acid contents of longissimus dorsi (LD) of growing-finishing pigs (P < 0.05). C60 improved meat quality by regulating lipid metabolism and muscle fiber morphology by mediating the expression of genes, L-lactic dehydrogenase (LDH), myosin heavy chain (MyHC) IIa, MyHCIIb, peroxisome proliferator-activated receptor γ (PPARγ), and fatty acid transport protein 1 (FATP1) (P < 0.05). Moreover, C60 substantially promoted the mRNA expression of antioxidant enzyme genes (P < 0.05), which also contributed to improving meat quality. These findings have important implications for the application of C60 in the livestock industry, especially for improving the meat quality of fattening pigs.
Collapse
Affiliation(s)
- Simeng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Guang Liu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Xin Wu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Jianjun Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Xiaoqing Li
- Xiamen Funano New Material Technology Company, Ltd, Xiamen, 361005, China
| | - Changfeng Zhu
- Xiamen Funano New Material Technology Company, Ltd, Xiamen, 361005, China
| | - Jiamei Huang
- Xiamen Funano New Material Technology Company, Ltd, Xiamen, 361005, China
| | - Shuo Zhang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Yunnan Southwest Agriculture and Animal Husbandry Group, Kunming, 650217, China
| | - Yulong Tang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Corresponding author.
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
- Corresponding author.
| |
Collapse
|
8
|
Fullerene C60 Protects Against Intestinal Injury from Deoxynivalenol Toxicity by Improving Antioxidant Capacity. Life (Basel) 2021; 11:life11060491. [PMID: 34071941 PMCID: PMC8229202 DOI: 10.3390/life11060491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress is involved in a wide variety of pathologies, and fullerene has been shown to have an antioxidant ability. Mycotoxins exert toxic effects through induction of excessive reactive oxygen species (ROS). Here, we evaluated water-soluble fullerene C60 for its anti-mycotoxin and antioxidant effects in vitro and in vivo. Intestinal epithelial cells were cultured with fullerene during deoxynivalenol (DON) exposure. The results revealed that fullerene C60 significantly promoted cell viability, decreased apoptosis and necrotic cell number, and significantly reduced intracellular ROS levels during DON exposure (p < 0.05). To investigate the role of fullerene in antioxidant capacity in vivo further, 40 three-week-old male C57BL/6 mice were randomly divided into four groups. There were no significant differences between the control and fullerene groups (p > 0.05). In mice exposed to DON, supplementation with fullerene C60 significantly improved growth performance, and enhanced the total antioxidant status and the activities of SOD and GPX in the intestine and liver (p < 0.05). In addition, fullerene C60 supplementation improved intestinal morphology, as indicated by a higher villus height and tight junction protein expression (p < 0.05). Furthermore, fullerene supplementation decreased serum concentrations of inflammatory cytokine and lipopolysaccharide (LPS; a penetrability marker) compared to the DON-challenged group (p < 0.05). The current study suggests that fullerene C60 improves intestinal antioxidant status against DON-induced oxidative stress in vitro and in vivo.
Collapse
|