Ye Y, Wan L, Hu J, Li X, Zhang K. Combined single-cell RNA sequencing and mendelian randomization to identify biomarkers associated with necrotic apoptosis in intervertebral disc degeneration.
Spine J 2024:S1529-9430(24)01030-1. [PMID:
39332686 DOI:
10.1016/j.spinee.2024.09.011]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/02/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND
Intervertebral disc degeneration (IDD) is associated with back pain; back pain is a world-wide contributor to poor quality of life, while necroptosis has the characteristics of necroptosis and apoptosis, however, its role in IDD is still unclear. Therefore, the aim of this study was to identify biomarkers associated with necroptosis in IDD.
PURPOSE
To explore biomarkers associated with necroptosis in IDD, reveal the pathogenesis of IDD, as well as provide new directions for the diagnosis and treatment of this disease.
STUDY DESIGN/SETTINGS
Retrospective cohort study. Our study employs scRNA-seq coupled with MR analysis to investigate the causal relationship between necroptosis and IDD, laying a foundational groundwork for unveiling the intricate pathogenic mechanisms of this condition.
METHODS
Data quality control and normalisation was executed in single-cell dataset, GSE205535. Then, different cell types were obtained by cell annotation through marker genes. Subsequently, chi-square test was employed to assess the distribution difference of different cell types between IDD and control to screen key cells. AUCell was applied to calculate necroptosis-related genes (NRGs) scores of all cell types, further key cells were divided into high and low NRGs groups according to the median AUC scores of different cell types. Afterwards, the differentially expressed genes (DEGs) within the 2 score groups were screened. Then, the genes that had causal relationship with IDD were selected as biomarkers by univariate and multivariate Mendelian randomization (MR) analysis. Finally, the expression of biomarkers in different cell types and pseudo-time analysis was analyzed separately.
RESULTS
In GSE205535, 16 different cell populations identified by UMAP cluster analysis were further annotated to 8 cell types using maker genes. Afterwards, 53 DEGs were screened between the high and low NRGs groups. In addition, 9 genes with causal relationship with IDD were obtained by univariate MR analysis, further multivariate MR analysis proved that NT5E and TMEM158 had a direct causal relationship with IDD, which were used as biomarkers in this study. This study not only found that the expression levels of NT5E and TMEM158 were higher in IDD group, but also found that fibrochondrocytes and inflammatory chondrocytes were the key cells of NT5E and TMEM158, respectively. In the end, the biomarkers had the same expression trend in the quasi-time series, and both of them from high to low and then increased.
CONCLUSION
NT5E and TMEM158, as biomarkers of necroptotic apoptotic IDD, were causally associated with IDD.
CLINICAL SIGNIFICANCE
The understanding of chondrocytes as key cells provides new perspectives for deeper elucidation of the pathogenesis of IDD, improved diagnostic methods, and the development of more effective treatments. These findings are expected to provide a more accurate and personalised approach to clinical diagnosis and treatment, thereby improving the prognosis and quality of life of patients with IDD.
Collapse