1
|
Zheng C, Chen Y, He T, Xiu Y, Dong X, Wang X, Wen X, Li C, Yao Q, Chen S, Zhan X, Gao L, Bai Z. Pentagalloylglucose alleviates acetaminophen-induced acute liver injury by modulating inflammation via cGAS-STING pathway. Mol Med 2024; 30:160. [PMID: 39333876 PMCID: PMC11428449 DOI: 10.1186/s10020-024-00924-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The cGAS-STING pathway is an important component of the innate immune system and plays significant role in acetaminophen-induced liver injury (AILI). Pentagalloylglucose (PGG) is a natural polyphenolic compound with various beneficial effects, including anti-cancer, antioxidant, anti-inflammatory, and liver-protective properties; however, whether it can be used for the treatment of AILI and the specific mechanism remain unclear. MATERIALS AND METHODS A cell culture model was created to study the effect of PGG on cGAS-STING pathway activation using various techniques including western blotting (WB), real-time quantitative polymerase chain reaction (RT-qPCR), immunofluorescence (IF), and immunoprecipitation (IP). The effect of PGG was investigated in vivo by establishing a dimethylxanthenone acetic acid (DMXAA)-mediated activation model. An AILI model was used to evaluate the hepatoprotective and therapeutic effects of PGG by detecting liver function indicators, liver histopathology, and cGAS-STING pathway-related indicators in mice with AILI. RESULTS PGG blocked cGAS-STING pathway activation in bone marrow-derived macrophages (BMDMs), THP-1 cells, and peripheral blood mononuclear cells (PBMCs) in vitro. Furthermore, PGG inhibited the generation of type I interferons (IFN-I) and the secretion of inflammatory factors in DMXAA-induced in vivo experiments. In addition, PGG also reduced serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP), improved liver tissue damage and apoptosis, and inhibited the cGAS-STING pathway activation caused by acetaminophen. In terms of the mechanism, PGG disrupted the connection between STING and TBK1. CONCLUSIONS PGG exerts a protective effect against AILI by blocking the cGAS-STING pathway, offering a promising treatment strategy.
Collapse
Affiliation(s)
- Congyang Zheng
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology, The Second Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Yuanyuan Chen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Tingting He
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Ye Xiu
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xu Dong
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology, The Second Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xianling Wang
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xinru Wen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Chengwei Li
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Qing Yao
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Simin Chen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xiaoyan Zhan
- Medical School of Chinese PLA, Beijing, China.
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Lili Gao
- Medical School of Chinese PLA, Beijing, China.
- Department of Gastroenterology, The Second Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Zhaofang Bai
- Medical School of Chinese PLA, Beijing, China.
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
2
|
Wang HF, Xu JS, Zong K, Liang ZW, Li RF, Xue JF, Ding J, Zhao LS. Jujuboside B alleviates acetaminophen-induced hepatotoxicity in mice by regulating Nrf2-STING signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115810. [PMID: 38100849 DOI: 10.1016/j.ecoenv.2023.115810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Jujuboside B (JuB) is the main bioactive saponin component of Chinese anti-insomnia herbal medicine Ziziphi Spinosae Semen, which has been reported to possess varied pharmacological functions. Even though it has been traditionally used to treat inflammation- and toxicity-related diseases, the effects of JuB on acetaminophen (APAP) overdose-induced hepatotoxicity have not been determined yet. METHODS C57BL/6 J mice were pre-treated with JuB (20 or 40 mg/kg) for seven days before APAP (400 mg/kg) injection. After 24 h of APAP treatment, serum, and liver tissues were collected to evaluate the therapeutic effects. To investigate whether the Nrf2-STING signaling pathway is involved in the protective effects of JuB against APAP-induced hepatotoxicity, the mice received the DMXAA (the specific STING agonist) or ML385 (the specific Nrf2 inhibitor) during the administration of JuB, and Hematoxylin-eosin staining, Real-time PCR, immunohistochemical, and western blot were performed. RESULTS JuB pretreatment reversed APAP-induced CYP2E1 accumulations and alleviated APAP-induced acute liver injury. Furthermore, JuB treatment significantly inhibited oxidative stress and the pro-inflammatory cytokines, as well as alleviated hepatocyte apoptosis induced by APAP. Besides, our result also demonstrated that JuB treatment upregulated the levels of total Nrf2, facilitated its nuclear translocation, upregulated the expression of HO-1 and NQO-1, and inhibited the APAP-induced STING pathway activation. Finally, we verified that the beneficial effects of JuB were weakened by DMXAA and ML385. CONCLUSION Our study suggested that JuB could ameliorate APAP-induced hepatic damage and verified a previously unrecognized mechanism by which JuB prevented APAP-induced hepatotoxicity through adjusting the Nrf2-STING pathway.
Collapse
Affiliation(s)
- Hong-Fei Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia-Shuang Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Zong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-Wei Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ren-Feng Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian-Feng Xue
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Ding
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Long-Shuan Zhao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Li X, Lao R, Lei J, Chen Y, Zhou Q, Wang T, Tong Y. Natural Products for Acetaminophen-Induced Acute Liver Injury: A Review. Molecules 2023; 28:7901. [PMID: 38067630 PMCID: PMC10708418 DOI: 10.3390/molecules28237901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The liver plays a vital role in metabolism, synthesis, and detoxification, but it is susceptible to damage from various factors such as viral infections, drug reactions, excessive alcohol consumption, and autoimmune diseases. This susceptibility is particularly problematic for patients requiring medication, as drug-induced liver injury often leads to underestimation, misdiagnosis, and difficulties in treatment. Acetaminophen (APAP) is a widely used and safe drug in therapeutic doses but can cause liver toxicity when taken in excessive amounts. This study aimed to investigate the hepatotoxicity of APAP and explore potential treatment strategies using a mouse model of APAP-induced liver injury. The study involved the evaluation of various natural products for their therapeutic potential. The findings revealed that natural products demonstrated promising hepatoprotective effects, potentially alleviating liver damage and improving liver function through various mechanisms such as oxidative stress and inflammation, which cause changes in signaling pathways. These results underscore the importance of exploring novel treatment options for drug-induced liver injury, suggesting that further research in this area could lead to the development of effective preventive and therapeutic interventions, ultimately benefiting patients with liver injury caused by medicine.
Collapse
Affiliation(s)
- Xiaoyangzi Li
- School of Medicine, Taizhou University, Taizhou 318000, China; (X.L.); (R.L.); (J.L.)
| | - Ruyang Lao
- School of Medicine, Taizhou University, Taizhou 318000, China; (X.L.); (R.L.); (J.L.)
| | - Jiawei Lei
- School of Medicine, Taizhou University, Taizhou 318000, China; (X.L.); (R.L.); (J.L.)
| | - Yuting Chen
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116000, China;
| | - Qi Zhou
- School of Pharmacy, Taizhou University, Taizhou 318000, China;
| | - Ting Wang
- School of Medicine, Taizhou University, Taizhou 318000, China; (X.L.); (R.L.); (J.L.)
| | - Yingpeng Tong
- School of Pharmacy, Taizhou University, Taizhou 318000, China;
| |
Collapse
|
4
|
Li X, Shi R, Yan L, Chu W, Sun R, Zheng B, Wang S, Tan H, Wang X, Gao Y. Natural product rhynchophylline prevents stress-induced hair graying by preserving melanocyte stem cells via the β2 adrenergic pathway suppression. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:54. [PMID: 38036925 PMCID: PMC10689686 DOI: 10.1007/s13659-023-00421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Norepinephrine (NA), a stress hormone, can accelerate hair graying by binding to β2 adrenergic receptors (β2AR) on melanocyte stem cells (McSCs). From this, NA-β2AR axis could be a potential target for preventing the stress effect. However, identifying selective blockers for β2AR has been a key challenge. Therefore, in this study, advanced computer-aided drug design (CADD) techniques were harnessed to screen natural molecules, leading to the discovery of rhynchophylline as a promising compound. Rhynchophylline exhibited strong and stable binding within the active site of β2AR, as verified by molecular docking and dynamic simulation assays. When administered to cells, rhynchophylline effectively inhibited NA-β2AR signaling. This intervention resulted in a significant reduction of hair graying in a stress-induced mouse model, from 28.5% to 8.2%. To gain a deeper understanding of the underlying mechanisms, transcriptome sequencing was employed, which revealed that NA might disrupt melanogenesis by affecting intracellular calcium balance and promoting cell apoptosis. Importantly, rhynchophylline acted as a potent inhibitor of these downstream pathways. In conclusion, the study demonstrated that rhynchophylline has the potential to mitigate the negative impact of NA on melanogenesis by targeting β2AR, thus offering a promising solution for preventing stress-induced hair graying.
Collapse
Affiliation(s)
- Xinxin Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Center for Child Care and Mental Health, Shenzhen Children's Hospital Affiliated to Shantou University Medical College, Shenzhen, 518026, China
| | - Runlu Shi
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Lingchen Yan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Weiwei Chu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Ruishuang Sun
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Binkai Zheng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Shuai Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
- The Yonghe Medical Beauty Clinic Department, Guangzhou, 510630, China
| | - Hui Tan
- Center for Child Care and Mental Health, Shenzhen Children's Hospital Affiliated to Shantou University Medical College, Shenzhen, 518026, China.
| | - Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ying Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China.
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, China.
| |
Collapse
|