1
|
Zayed M, Kook SH, Jeong BH. Potential Therapeutic Use of Stem Cells for Prion Diseases. Cells 2023; 12:2413. [PMID: 37830627 PMCID: PMC10571911 DOI: 10.3390/cells12192413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
Prion diseases are neurodegenerative disorders that are progressive, incurable, and deadly. The prion consists of PrPSc, the misfolded pathogenic isoform of the cellular prion protein (PrPC). PrPC is involved in a variety of physiological functions, including cellular proliferation, adhesion, differentiation, and neural development. Prion protein is expressed on the membrane surface of a variety of stem cells (SCs), where it plays an important role in the pluripotency and self-renewal matrix, as well as in SC differentiation. SCs have been found to multiply the pathogenic form of the prion protein, implying their potential as an in vitro model for prion diseases. Furthermore, due to their capability to self-renew, differentiate, immunomodulate, and regenerate tissue, SCs are prospective cell treatments in many neurodegenerative conditions, including prion diseases. Regenerative medicine has become a new revolution in disease treatment in recent years, particularly with the introduction of SC therapy. Here, we review the data demonstrating prion diseases' biology and molecular mechanism. SC biology, therapeutic potential, and its role in understanding prion disease mechanisms are highlighted. Moreover, we summarize preclinical studies that use SCs in prion diseases.
Collapse
Affiliation(s)
- Mohammed Zayed
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea;
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea;
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
2
|
Volpina OM, Volkova TD, Medvinskaya NI, Kamynina AV, Zaporozhskaya YV, Aleksandrova IY, Koroev DO, Samokhin AN, Nesterova IV, Deygin VI, Bobkova NV. Protective activity of fragments of the prion protein after immunization of animals with experimentally induced Alzheimer’s disease. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 41:145-53. [DOI: 10.1134/s1068162015020168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Mediano DR, Sanz-Rubio D, Ranera B, Bolea R, Martín-Burriel I. The potential of mesenchymal stem cell in prion research. Zoonoses Public Health 2014; 62:165-78. [PMID: 24854140 DOI: 10.1111/zph.12138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Indexed: 01/09/2023]
Abstract
Scrapie and bovine spongiform encephalopathy are fatal neurodegenerative diseases caused by the accumulation of a misfolded protein (PrP(res)), the pathological form of the cellular prion protein (PrP(C)). For the last decades, prion research has greatly progressed, but many questions need to be solved about prion replication mechanisms, cell toxicity, differences in genetic susceptibility, species barrier or the nature of prion strains. These studies can be developed in murine models of transmissible spongiform encephalopathies, although development of cell models for prion replication and sample titration could reduce economic and timing costs and also serve for basic research and treatment testing. Some murine cell lines can replicate scrapie strains previously adapted in mice and very few show the toxic effects of prion accumulation. Brain cell primary cultures can be more accurate models but are difficult to develop in naturally susceptible species like humans or domestic ruminants. Stem cells can be differentiated into neuron-like cells and be infected by prions. However, the use of embryo stem cells causes ethical problems in humans. Mesenchymal stem cells (MSCs) can be isolated from many adult tissues, including bone marrow, adipose tissue or even peripheral blood. These cells differentiate into neuronal cells, express PrP(C) and can be infected by prions in vitro. In addition, in the last years, these cells are being used to develop therapies for many diseases, including neurodegenerative diseases. We review here the use of cell models in prion research with a special interest in the potential use of MSCs.
Collapse
Affiliation(s)
- D R Mediano
- Facultad de Veterinaria, Laboratorio de Genética Bioquímica, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | | | |
Collapse
|
4
|
Bobkova NV, Medvinskaya NI, Kamynina AV, Aleksandrova IY, Nesterova IV, Samokhin AN, Koroev DO, Filatova MP, Nekrasov PV, Abramov AY, Leonov SV, Volpina OM. Immunization with either prion protein fragment 95-123 or the fragment-specific antibodies rescue memory loss and neurodegenerative phenotype of neurons in olfactory bulbectomized mice. Neurobiol Learn Mem 2013; 107:50-64. [PMID: 24239620 DOI: 10.1016/j.nlm.2013.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 09/17/2013] [Accepted: 10/25/2013] [Indexed: 12/12/2022]
Abstract
Epidemiological studies demonstrated association between head injury (HI) and the subsequent development of Alzheimer's disease (AD). Certain hallmarks of AD, e.g. amyloid-β (Aβ) containing deposits, may be found in patients following traumatic BI (TBI). Recent studies uncover the cellular prion protein, PrP(C), as a receptor for soluble polymeric forms of Aβ (sAβ) which are an intermediate of such deposits. We aimed to test the hypothesis that targeting of PrP(C) can prevent Aβ related spatial memory deficits in olfactory bulbectomized (OBX) mice utilized here to resemble some clinical features of AD, such as increased level of Aβ, memory loss and deficit of the CNS cholin- and serotonin-ergic systems. We demonstrated that immunization with the a.a. 95-123 fragment of cellular prion (PrP-I) recovered cortical and hippocampus neurons from OBX induced degeneration, rescued spatial memory loss in Morris water maze test and significantly decrease the Aβ level in brain tissue of these animals. Affinity purified anti-PrP-I antibodies rescued pre-synaptic biomarker synaptophysin eliciting similar effect on memory of OBX mice, and protected hippocampal neurones from Aβ25-35-induced toxicity in vitro. Immunization OBX mice with a.a. 200-213 fragment of cellular prion (PrP-II) did not reach a significance in memory protection albeit having similar to PrP-I immunization impact on Aβ level in brain tissue. The observed positive effect of targeting the PrP-I by either active or passive immunization on memory of OBX mice revealed the involvement of the PrP(C) in AD-like pathology induced by olfactory bulbectomy. This OBX model may be a useful tool for mechanistic and preclinical therapeutic investigations into the association between PrP(C) and AD.
Collapse
Affiliation(s)
- N V Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya, 3. Pushchino, Russia.
| | - N I Medvinskaya
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya, 3. Pushchino, Russia.
| | - A V Kamynina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia.
| | - I Y Aleksandrova
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya, 3. Pushchino, Russia.
| | - I V Nesterova
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya, 3. Pushchino, Russia.
| | - A N Samokhin
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya, 3. Pushchino, Russia.
| | - D O Koroev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia.
| | - M P Filatova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia.
| | - P V Nekrasov
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya, 3. Pushchino, Russia.
| | - A Y Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK.
| | - S V Leonov
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya, 3. Pushchino, Russia; Department of Biology, Chemical Diversity Research Institute (CDRI), Rabochaya St., 2-A, 141400 Khimki, Moscow Region, Russia; BioBusiness Incubator, Moscow Institute of Physics and Technology, Institutsky pereulok, 9, Dolgoprudny, Moscow Region 141700, Russia.
| | - O M Volpina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia.
| |
Collapse
|
5
|
Molecular dynamics studies on the NMR and X-ray structures of rabbit prion proteins. J Theor Biol 2013; 342:70-82. [PMID: 24184221 DOI: 10.1016/j.jtbi.2013.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/25/2013] [Accepted: 10/09/2013] [Indexed: 12/27/2022]
Abstract
Prion diseases, traditionally referred to as transmissible spongiform encephalopathies (TSEs), are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of mammalian species, manifesting as scrapie in sheep and goats, bovine spongiform encephalopathy (BSE or mad-cow disease) in cattle, chronic wasting disease in deer and elk, and Creutzfeldt-Jakob diseases, Gerstmann-Sträussler-Scheinker syndrome, fatal familial insomnia, and kulu in humans, etc. These neurodegenerative diseases are caused by the conversion from a soluble normal cellular prion protein (PrP(C)) into insoluble abnormally folded infectious prions (PrP(Sc)), and the conversion of PrP(C) to PrP(Sc) is believed to involve conformational change from a predominantly α-helical protein to one rich in β-sheet structure. Such a conformational change may be amenable to study by molecular dynamics (MD) techniques. For rabbits, classical studies show that they have a low susceptibility to be infected by PrP(Sc), but recently it was reported that rabbit prions can be generated through saPMCA (serial automated Protein Misfolding Cyclic Amplification) in vitro and the rabbit prion is infectious and transmissible. In this paper, we first do a detailed survey on the research advances of rabbit prion protein (RaPrP) and then we perform MD simulations on the NMR and X-ray molecular structures of rabbit prion protein wild-type and mutants. The survey shows to us that rabbits were not challenged directly in vivo with other known prion strains and the saPMCA result did not pass the test of the known BSE strain of cattle. Thus, we might still look rabbits as a prion resistant species. MD results indicate that the three α-helices of the wild-type are stable under the neutral pH environment (but under low pH environment the three α-helices have been unfolded into β-sheets), and the three α-helices of the mutants (I214V and S173N) are unfolded into rich β-sheet structures under the same pH environment. In addition, we found an interesting result that the salt bridges such as ASP201-ARG155, ASP177-ARG163 contribute greatly to the structural stability of RaPrP.
Collapse
|
6
|
Kamynina AV, Filatova MP, Koroev DO, Abramov AY, Volpina OM. Antibodies to synthetic fragment 95–123 of the prion protein protect neurons and astrocytes from beta-amyloid toxicity. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2013; 39:131-40. [DOI: 10.1134/s1068162013020076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Geissen M, Leidel F, Eiden M, Hirschberger T, Fast C, Bertsch U, Tavan P, Giese A, Kretzschmar H, Schatzl HM, Groschup MH. From high-throughput cell culture screening to mouse model: identification of new inhibitor classes against prion disease. ChemMedChem 2011; 6:1928-37. [PMID: 21755599 DOI: 10.1002/cmdc.201100119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 06/21/2011] [Indexed: 11/10/2022]
Abstract
Transmissible spongiform encephalopathies (TSE) or prion diseases belong to a category of fatal and so far untreatable neurodegenerative conditions. All prion diseases are characterized by both degeneration in the central nervous system (CNS) in humans and animals and the deposition and accumulation of Proteinase K-resistant prion protein (PrP(res)). Until now, no pharmaceutical product has been available to cure these diseases or to alleviate their associated symptoms. Here, a cell-culture screening system is described that allows for the large-scale analysis of the PrP(res) inhibitory potential of a library of compounds and the identification of structural motifs leading potent compounds able to cause PrP(res) clearance at the cellular level. Based on different scrapie-infected cell lines, 10,000 substances were tested, out of which 530 potential inhibitors were identified. After re-screening and validation using a series of dilutions, 14 compounds were identified as the most effective. These 14 compounds were then used for therapeutic studies in a mouse bioassay to test and verify their in vivo potency. Two compounds exhibited therapeutic potential in the mouse model by significantly extending the survival time of intracerebrally infected mice, when treated 90 days after infection with scrapie.
Collapse
Affiliation(s)
- Markus Geissen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute for Novel and Emerging Infectious Diseases, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Antiprion action of new cyclodextrin analogues. Biochim Biophys Acta Gen Subj 2009; 1790:1382-6. [PMID: 19631725 DOI: 10.1016/j.bbagen.2009.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/08/2009] [Accepted: 07/10/2009] [Indexed: 11/22/2022]
Abstract
BACKGROUND Prion disorders are characterised by the accumulation of a misfolded isoform (PrPSc) of the host encoded prion protein (PrPC). This paper examines the antiprion potential of cyclodextrin (CD) analogues and it identifies sulphated-beta-cyclodextrin, with a half-maximal inhibitory concentration (IC50) of 2.4 microM, as having 31-fold greater antiprion activity than that previously reported for beta-cyclodextrin (betaCD). METHODS Scrapie infected cells were treated with a range of betaCD analogues. This enabled a CD structure to antiprion activity analysis to be carried out. The metachromatic activity of each of the cyclodextrins was determined, this test is employed to mimic complexation of glycosaminogylcans to a cell membrane. RESULTS Sulphated-betaCD had an IC50 of 2.4 microM and it was the only CD found to have metachromatic activity. Its activity was equivalent to that of heparin and heparin sulphate, this may account for sulphated-betaCD's superior antiprion action. GENERAL SIGNIFICANCE In solution heparin can form a helical structure with a hydrophobic interior, the hydrophobic interior of cyclic CDs is vital for CD molecule encapsulation. The controlled CD structure, however, restricts degradation by human enzymes; consequently sulphated-CDs could be ideal candidates in the search for prion therapeutics. Sulphated-CDs may open up avenues for the treatment of TSEs.
Collapse
|
9
|
Jones M, Wight D, McLoughlin V, Norrby K, Ironside JW, Connolly JG, Farquhar CF, MacGregor IR, Head MW. An antibody to the aggregated synthetic prion protein peptide (PrP106-126) selectively recognizes disease-associated prion protein (PrP) from human brain specimens. Brain Pathol 2009; 19:293-302. [PMID: 18507665 PMCID: PMC8094797 DOI: 10.1111/j.1750-3639.2008.00181.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/21/2008] [Accepted: 04/22/2008] [Indexed: 11/29/2022] Open
Abstract
Human prion diseases are characterized by the conversion of the normal host cellular prion protein (PrP(C)) into an abnormal misfolded form [disease-associated prion protein (PrP(Sc))]. Antibodies that are capable of distinguishing between PrP(C) and PrP(Sc) may prove to be useful, not only for the diagnosis of these diseases, but also for a better understanding of the molecular mechanisms involved in disease pathogenesis. In an attempt to produce such antibodies, we immunized mice with an aggregated peptide spanning amino acid residues 106 to 126 of human PrP (PrP106-126). We were able to isolate and single cell clone a hybridoma cell line (P1:1) which secreted an IgM isotype antibody [monoclonal antibody (mAb P1:1)] that recognized the aggregated, but not the monomeric form of the immunogen. When used in immunoprecipitation assays, the antibody did not recognize normal PrP(C) from non-prion disease brain specimens, but did selectively immunoprecipitate full-length PrP(Sc) from cases of variant and sporadic Creutzfeldt-Jakob disease and Gerstmann-Straussler-Scheinker disease. These results suggest that P1:1 recognizes an epitope formed during the structural rearrangement or aggregation of the PrP that is common to the major PrP(Sc) types found in the most common forms of human prion disease.
Collapse
Affiliation(s)
- Michael Jones
- National CJD Surveillance Unit, School of Molecular and Clinical Medicine (Pathology), University of Edinburgh, Western General Hospital, Edinburgh, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gilch S, Krammer C, Schätzl HM. Targeting prion proteins in neurodegenerative disease. Expert Opin Biol Ther 2008; 8:923-40. [PMID: 18549323 DOI: 10.1517/14712598.8.7.923] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Spongiform neurodegeneration is the pathological hallmark of individuals suffering from prion disease. These disorders, whose manifestation is sporadic, familial or acquired by infection, are caused by accumulation of the aberrantly folded isoform of the cellular prion protein (PrP(c)), termed PrP(Sc). Although usually rare, prion disorders are inevitably fatal and transferrable by infection. OBJECTIVE Pathology is restricted to the central nervous system and premortem diagnosis is usually not possible. Yet, promising approaches towards developing therapeutic regimens have been made recently. METHODS The biology of prion proteins and current models of neurotoxicity are discussed and prophylactic and therapeutic concepts are introduced. RESULTS/CONCLUSIONS Although various promising drug candidates with antiprion activity have been identified, this proof-of-concept cannot be transferred into translational medicine yet.
Collapse
Affiliation(s)
- Sabine Gilch
- Technische Universität München, Institute of Virology, Prion Research Group, Trogerstreet 30, 81675 Munich, Germany
| | | | | |
Collapse
|
11
|
Noinville S, Chich JF, Rezaei H. Misfolding of the prion protein: linking biophysical and biological approaches. Vet Res 2008; 39:48. [PMID: 18533092 DOI: 10.1051/vetres:2008025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 06/03/2008] [Indexed: 01/19/2023] Open
Abstract
Prion diseases are a group of neurodegenerative diseases that can arise spontaneously, be inherited, or acquired by infection in mammals. The propensity of the prion protein to adopt different structures is a clue to its pathological and perhaps biological role too. While the normal monomeric PrP is well characterized, the misfolded conformations responsible for neurodegeneration remain elusive despite progress in this field. Both structural dynamics and physico-chemical approaches are thus fundamental for a better knowledge of the molecular basis of this pathology. Indeed, multiple misfolding pathways combined with extensive posttranslational modifications of PrP and probable interaction(s) with cofactors call for a combination of approaches. In this review, we outline the current physico-chemical knowledge explaining the conformational diversities of PrP in relation with postulated or putative cellular partners such as proteic or non-proteic ligands.
Collapse
Affiliation(s)
- Sylvie Noinville
- Institut National de la Recherche Agronomique, Virologie et Immunologie Moléculaires, F-78352 Jouy-en-Josas, France
| | | | | |
Collapse
|