1
|
Reiche L, Göttle P, Lane L, Duek P, Park M, Azim K, Schütte J, Manousi A, Schira-Heinen J, Küry P. C21orf91 Regulates Oligodendroglial Precursor Cell Fate-A Switch in the Glial Lineage? Front Cell Neurosci 2021; 15:653075. [PMID: 33796011 PMCID: PMC8008080 DOI: 10.3389/fncel.2021.653075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Neuropathological diseases of the central nervous system (CNS) are frequently associated with impaired differentiation of the oligodendroglial cell lineage and subsequent alterations in white matter structure and dynamics. Down syndrome (DS), or trisomy 21, is the most common genetic cause for cognitive impairments and intellectual disability (ID) and is associated with a reduction in the number of neurons and oligodendrocytes, as well as with hypomyelination and astrogliosis. Recent studies mainly focused on neuronal development in DS and underestimated the role of glial cells as pathogenic players. This also relates to C21ORF91, a protein considered a key modulator of aberrant CNS development in DS. We investigated the role of C21orf91 ortholog in terms of oligodendrogenesis and myelination using database information as well as through cultured primary oligodendroglial precursor cells (OPCs). Upon modulation of C21orf91 gene expression, we found this factor to be important for accurate oligodendroglial differentiation, influencing their capacity to mature and to myelinate axons. Interestingly, C21orf91 overexpression initiates a cell population coexpressing astroglial- and oligodendroglial markers indicating that elevated C21orf91 expression levels induce a gliogenic shift towards the astrocytic lineage reflecting non-equilibrated glial cell populations in DS brains.
Collapse
Affiliation(s)
- Laura Reiche
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Peter Göttle
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Lydie Lane
- CALIPHO Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland.,Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Paula Duek
- CALIPHO Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland.,Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mina Park
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kasum Azim
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jana Schütte
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anastasia Manousi
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jessica Schira-Heinen
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Horiuchi M, Suzuki-Horiuchi Y, Akiyama T, Itoh A, Pleasure D, Carstens E, Itoh T. Differing intrinsic biological properties between forebrain and spinal oligodendroglial lineage cells. J Neurochem 2017; 142:378-391. [PMID: 28512742 DOI: 10.1111/jnc.14074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/21/2022]
Abstract
Differentiation of oligodendroglial progenitor cells (OPCs) into myelinating oligodendrocytes is known to be regulated by the microenvironment where they differentiate. However, current research has not verified whether or not oligodendroglial lineage cells (OLCs) derived from different anatomical regions of the central nervous system (CNS) respond to microenvironmental cues in the same manner. Here, we isolated pure OPCs from rat neonatal forebrain (FB) and spinal cord (SC) and compared their phenotypes in the same in vitro conditions. We found that although FB and SC OLCs responded differently to the same external factors; they were distinct in proliferation response to mitogens, oligodendrocyte phenotype after differentiation, and cytotoxic responses to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-type glutamate receptor-mediated excitotoxicity at immature stages of differentiation in a cell-intrinsic manner. Moreover, transcriptome analysis identified genes differentially expressed between these OPC populations, including those encoding transcription factors (TFs), cell surface molecules, and signaling molecules. Particularly, FB and SC OPCs retained the expression of FB- or SC-specific TFs, such as Foxg1 and Hoxc8, respectively, even after serial passaging in vitro. Given the essential role of these TFs in the regional identities of CNS cells along the rostrocaudal axis, our results suggest that CNS region-specific gene regulation by these TFs may cause cell-intrinsic differences in cellular responses between FB and SC OLCs to extracellular molecules. Further understanding of the regional differences among OPC populations will help to improve treatments for demyelination in different CNS regions and to facilitate the development of stem cell-derived OPCs for cell transplantation therapies for demyelination. Cover Image for this issue: doi. 10.1111/jnc.13809.
Collapse
Affiliation(s)
- Makoto Horiuchi
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yoko Suzuki-Horiuchi
- Department of Dermatology, Institute of Regenerative Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Tasuku Akiyama
- Temple Itch Center, Department of Dermatology, Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Aki Itoh
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, California, USA.,Department of Neurology, School of Medicine, University of California, Sacramento, California, USA
| | - David Pleasure
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, California, USA.,Department of Neurology, School of Medicine, University of California, Sacramento, California, USA
| | - Earl Carstens
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, California, USA
| | - Takayuki Itoh
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, California, USA.,Department of Neurology, School of Medicine, University of California, Sacramento, California, USA
| |
Collapse
|
3
|
Mao XG, Song SJ, Xue XY, Yan M, Wang L, Lin W, Guo G, Zhang X. LGR5 is a proneural factor and is regulated by OLIG2 in glioma stem-like cells. Cell Mol Neurobiol 2013; 33:851-65. [PMID: 23793848 DOI: 10.1007/s10571-013-9951-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 06/13/2013] [Indexed: 01/10/2023]
Abstract
The biological functional roles of LGR5 (leucine-rich repeat containing G protein-coupled receptor 5, also known as GPR49), a novel potential marker for stem-like cells in glioblastoma (GSCs), is poorly acknowledged. Here, we demonstrated that LGR5 was detected in glioblastoma tissues and GSCs. Bioinformatics analysis revealed that LGR5 is closely related to neurogenesis and neuronal functions, and preferentially expressed in Proneural subtype of GBMs. Furthermore, LGR5 is regulated by Proneural factor OLIG2, which is important for both neurogenesis and GSC maintenance. Biological experiments in GSC cells validated the bioinformatics analysis results and revealed that LGR5 regulated the tumor sphere formation capacity, an important stem cell property for GSCs. Therefore, LGR5 expression may be functionally correlated with the neurogenic competence, and be regulated by OLIG2 in GSCs.
Collapse
Affiliation(s)
- Xing-Gang Mao
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Oligodendrocytes are the myelin-forming cells of the vertebrate CNS. Little is known about the molecular control of region-specific oligodendrocyte development. Here, we show that oligodendrogenesis in the mouse rostral hindbrain, which is organized in a metameric series of rhombomere-derived (rd) territories, follows a rhombomere-specific pattern, with extensive production of oligodendrocytes in the pontine territory (r4d) and delayed and reduced oligodendrocyte production in the prepontine region (r2d, r3d). We demonstrate that segmental organization of oligodendrocytes is controlled by Hox genes, namely Hoxa2 and Hoxb2. Specifically, Hoxa2 loss of function induced a dorsoventral enlargement of the Olig2/Nkx2.2-expressing oligodendrocyte progenitor domain, whereas conditional Hoxa2 overexpression in the Olig2(+) domain inhibited oligodendrogenesis throughout the brain. In contrast, Hoxb2 deletion resulted in a reduction of the pontine oligodendrogenic domain. Compound Hoxa2(-/-)/Hoxb2(-/-) mutant mice displayed the phenotype of Hoxb2(-/-) mutants in territories coexpressing Hoxa2 and Hoxb2 (rd3, rd4), indicating that Hoxb2 antagonizes Hoxa2 during rostral hindbrain oligodendrogenesis. This study provides the first in vivo evidence that Hox genes determine oligodendrocyte regional identity in the mammalian brain.
Collapse
|
5
|
Wang M, Doucette JR, Nazarali AJ. Conditional Tet-regulated over-expression of Hoxa2 in CG4 cells increases their proliferation and delays their differentiation into oligodendrocyte-like cells expressing myelin basic protein. Cell Mol Neurobiol 2011; 31:875-86. [PMID: 21479584 DOI: 10.1007/s10571-011-9685-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 03/16/2011] [Indexed: 12/11/2022]
Abstract
Hoxa2 gene was reported to be expressed by oligodendrocytes (OLs) and down-regulated at the terminal differentiation stage during oligodendrogenesis in mice (Nicolay et al. 2004b). To further investigate the role of Hoxa2 in oligodendroglial development, a tetracycline regulated controllable expression system was utilized to establish a stable cell line (CG4-SHoxa2 [sense Hoxa2]), where the expression level of Hoxa2 gene could be up-regulated. The impact of Hoxa2 over-expression on the proliferation and differentiation of CG4-SHoxa2 cells was investigated. Up-regulation of Hoxa2 increased the proliferation of CG4-SHoxa2 cells. The mRNA levels of PDGFαR (platelet-derived growth factor [PDGF] alpha receptor), which is expressed by OL progenitor cells, were not different in CG4-SHoxa2 cells compared to wild-type CG4 cells. Semi-quantitative RT-PCR revealed that the mRNA levels of myelin basic protein (MBP) was lower in CG4-SHoxa2 cells than in wild-type CG4 cells indicating the differentiation of CG4-SHoxa2 cells was delayed when the Hoxa2 gene was up-regulated.
Collapse
Affiliation(s)
- Monica Wang
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | | | | |
Collapse
|
6
|
Fulton DL, Denarier E, Friedman HC, Wasserman WW, Peterson AC. Towards resolving the transcription factor network controlling myelin gene expression. Nucleic Acids Res 2011; 39:7974-91. [PMID: 21729871 PMCID: PMC3185407 DOI: 10.1093/nar/gkr326] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the central nervous system (CNS), myelin is produced from spirally-wrapped oligodendrocyte plasma membrane and, as exemplified by the debilitating effects of inherited or acquired myelin abnormalities in diseases such as multiple sclerosis, it plays a critical role in nervous system function. Myelin sheath production coincides with rapid up-regulation of numerous genes. The complexity of their subsequent expression patterns, along with recently recognized heterogeneity within the oligodendrocyte lineage, suggest that the regulatory networks controlling such genes drive multiple context-specific transcriptional programs. Conferring this nuanced level of control likely involves a large repertoire of interacting transcription factors (TFs). Here, we combined novel strategies of computational sequence analyses with in vivo functional analysis to establish a TF network model of coordinate myelin-associated gene transcription. Notably, the network model captures regulatory DNA elements and TFs known to regulate oligodendrocyte myelin gene transcription and/or oligodendrocyte development, thereby validating our approach. Further, it links to numerous TFs with previously unsuspected roles in CNS myelination and suggests collaborative relationships amongst both known and novel TFs, thus providing deeper insight into the myelin gene transcriptional network.
Collapse
Affiliation(s)
- Debra L Fulton
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, V5Z 4H4, Canada
| | | | | | | | | |
Collapse
|
7
|
Buccoliero AM, Castiglione F, Rossi Degl'Innocenti D, Ammanati F, Giordano F, Sanzo M, Mussa F, Genitori L, Taddei GL. Hox-D genes expression in pediatric low-grade gliomas: real-time-PCR study. Cell Mol Neurobiol 2009; 29:1-6. [PMID: 18404365 DOI: 10.1007/s10571-008-9282-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 03/27/2008] [Indexed: 01/13/2023]
Abstract
HOX genes encode transcription factors, which play a key role in morphogenesis and cell differentiation during embryogenesis. Several observations indicate that a deregulated expression of these genes may result in tumor development and progression. Actually, several HOX genes are aberrantly expressed in many tumors and cell lines derived from them. Little is known about the expression of HOX genes in brain tumors. In the present work, we study the relative expression of HOX-D genes (D1, D3, D4, D8, D9, D10, D11, D12, D13) with real-time polymerase chain reaction in a group of 14 pediatric low-grade gliomas. We compare the HOX-D expression level of the 14 tumors with the average expression level of six non-neoplastic human brain tissues. HOX-D1 and HOX-D12 resulted over-expressed in neoplastic samples with respect to non-neoplastic brain parenchyma. Conversely, HOX-D3 was expressed at a lower level in gliomas with respect to non-neoplastic brain. HOX-D4, HOX-D11, and HOX-D13 were never expressed. HOX-D8, HOX-D9, and HOX-D10 were exceptionally expressed in non-neoplastic samples and irregularly expressed in tumors. The observation that all but three HOX-D genes studied are expressed with different pattern in neoplastic and non-neoplastic brain tissue may support the hypothesis that HOX-D genes play a role in the pathogenesis of pediatric low-grade gliomas.
Collapse
Affiliation(s)
- Anna Maria Buccoliero
- Department of Human Pathology and Oncology, University of Florence, Viale G.B. Morgagni, 85, 50134, Florence, Italy,
| | | | | | | | | | | | | | | | | |
Collapse
|