1
|
Koukalova L, Chmelova M, Amlerova Z, Vargova L. Out of the core: the impact of focal ischemia in regions beyond the penumbra. Front Cell Neurosci 2024; 18:1336886. [PMID: 38504666 PMCID: PMC10948541 DOI: 10.3389/fncel.2024.1336886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/08/2024] [Indexed: 03/21/2024] Open
Abstract
The changes in the necrotic core and the penumbra following induction of focal ischemia have been the focus of attention for some time. However, evidence shows, that ischemic injury is not confined to the primarily affected structures and may influence the remote areas as well. Yet many studies fail to probe into the structures beyond the penumbra, and possibly do not even find any significant results due to their short-term design, as secondary damage occurs later. This slower reaction can be perceived as a therapeutic opportunity, in contrast to the ischemic core defined as irreversibly damaged tissue, where the window for salvation is comparatively short. The pathologies in remote structures occur relatively frequently and are clearly linked to the post-stroke neurological outcome. In order to develop efficient therapies, a deeper understanding of what exactly happens in the exo-focal regions is necessary. The mechanisms of glia contribution to the ischemic damage in core/penumbra are relatively well described and include impaired ion homeostasis, excessive cell swelling, glutamate excitotoxic mechanism, release of pro-inflammatory cytokines and phagocytosis or damage propagation via astrocytic syncytia. However, little is known about glia involvement in post-ischemic processes in remote areas. In this literature review, we discuss the definitions of the terms "ischemic core", "penumbra" and "remote areas." Furthermore, we present evidence showing the array of structural and functional changes in the more remote regions from the primary site of focal ischemia, with a special focus on glia and the extracellular matrix. The collected information is compared with the processes commonly occurring in the ischemic core or in the penumbra. Moreover, the possible causes of this phenomenon and the approaches for investigation are described, and finally, we evaluate the efficacy of therapies, which have been studied for their anti-ischemic effect in remote areas in recent years.
Collapse
Affiliation(s)
- Ludmila Koukalova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Zuzana Amlerova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Shishkina GT, Kalinina TS, Lanshakov DA, Bulygina VV, Komysheva NP, Bannova AV, Drozd US, Dygalo NN. Genes Involved by Dexamethasone in Prevention of Long-Term Memory Impairment Caused by Lipopolysaccharide-Induced Neuroinflammation. Biomedicines 2023; 11:2595. [PMID: 37892969 PMCID: PMC10604440 DOI: 10.3390/biomedicines11102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023] Open
Abstract
Inflammatory activation within the brain is linked to a decrease in cognitive abilities; however, the molecular mechanisms implicated in the development of inflammatory-related cognitive dysfunction and its prevention are poorly understood. This study compared the responses of hippocampal transcriptomes 3 months after the striatal infusion of lipopolysaccharide (LPS; 30 µg), resulting in memory loss, or with dexamethasone (DEX; 5 mg/kg intraperitoneal) pretreatment, which abolished the long-term LPS-induced memory impairment. After LPS treatment, a significant elevation in the expression of immunity/inflammatory-linked genes, including chemokines (Cxcl13), cytokines (Il1b and Tnfsf13b), and major histocompatibility complex (MHC) class II members (Cd74, RT1-Ba, RT1-Bb, RT1-Da, and RT1-Db1) was observed. DEX pretreatment did not change the expression of these genes, but significantly affected the expression of genes encoding ion channels, primarily calcium and potassium channels, regulators of glutamate (Slc1a2, Grm5, Grin2a), and GABA (Gabrr2, Gabrb2) neurotransmission, which enriched in such GO biological processes as "Regulation of transmembrane transport", "Cognition", "Learning", "Neurogenesis", and "Nervous system development". Taken together, these data suggest that (1) pretreatment with DEX did not markedly affect LPS-induced prolonged inflammatory response; (2) DEX pretreatment can affect processes associated with glutamatergic signaling and nervous system development, possibly involved in the recovery of memory impairment induced by LPS.
Collapse
Affiliation(s)
- Galina T. Shishkina
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia; (T.S.K.); (D.A.L.); (V.V.B.); (N.P.K.); (A.V.B.); (U.S.D.); (N.N.D.)
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Ferreira RS, Ribeiro PR, Silva JHCE, Hoppe JB, de Almeida MMA, de Lima Ferreira BC, Andrade GB, de Souza SB, Ferdandez LG, de Fátima Dias Costa M, Salbego CG, Rivera AD, Longoni A, de Assis AM, Pieropan F, Moreira JCF, Costa SL, Butt AM, da Silva VDA. Amburana cearensis seed extract stimulates astrocyte glutamate homeostatic mechanisms in hippocampal brain slices and protects oligodendrocytes against ischemia. BMC Complement Med Ther 2023; 23:154. [PMID: 37170258 PMCID: PMC10173544 DOI: 10.1186/s12906-023-03959-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Stroke is a leading cause of death and disability worldwide. A major factor in brain damage following ischemia is excitotoxicity caused by elevated levels of the neurotransmitter glutamate. In the brain, glutamate homeostasis is a primary function of astrocytes. Amburana cearensis has long been used in folk medicine and seed extract obtained with dichloromethane (EDAC) have previously been shown to exhibit cytoprotective activity in vitro. The aim of the present study was to analyse the activity of EDAC in hippocampal brain slices. METHODS We prepared a dichloromethane extract (EDAC) from A. cearensis seeds and characterized the chemical constituents by 1H and 13C-NMR. Hippocampal slices from P6-8 or P90 Wistar rats were used for cell viability assay or glutamate uptake test. Hippocampal slices from P10-12 transgenic mice SOX10-EGFP and GFAP-EGFP and immunofluorescence for GS, GLAST and GLT1 were used to study oligodendrocytes and astrocytes. RESULTS Astrocytes play a critical role in glutamate homeostasis and we provide immunohistochemical evidence that in excitotoxicity EDAC increased expression of glutamate transporters and glutamine synthetase, which is essential for detoxifying glutamate. Next, we directly examined astrocytes using transgenic mice in which glial fibrillary acidic protein (GFAP) drives expression of enhanced green fluorescence protein (EGFP) and show that glutamate excitotoxicity caused a decrease in GFAP-EGFP and that EDAC protected against this loss. This was examined further in the oxygen-glucose deprivation (OGD) model of ischemia, where EDAC caused an increase in astrocytic process branching, resulting in an increase in GFAP-EGFP. Using SOX10-EGFP reporter mice, we show that the acute response of oligodendrocytes to OGD in hippocampal slices is a marked loss of their processes and EDAC protected oligodendrocytes against this damage. CONCLUSION This study provides evidence that EDAC is cytoprotective against ischemia and glutamate excitotoxicity by modulating astrocyte responses and stimulating their glutamate homeostatic mechanisms.
Collapse
Affiliation(s)
- Rafael Short Ferreira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Paulo Roberto Ribeiro
- Metabolomics Research Group, Department of Organic Chemistry, Chemistry Institute, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Juliana Helena Castro E Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Juliana Bender Hoppe
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Monique Marylin Alves de Almeida
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Beatriz Correia de Lima Ferreira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil
| | - Gustavo Borges Andrade
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil
| | - Suzana Braga de Souza
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil
| | - Luzimar Gonzaga Ferdandez
- Biochemistry, Biotechnology and Bioproducts Laboratory, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Maria de Fátima Dias Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil
| | - Christianne Gazzana Salbego
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Andrea Domenico Rivera
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Aline Longoni
- Health Sciences Centre, Post-Graduate Program in Health and Behaviour, Catholic University of Pelotas, Pelotas, Brazil
| | - Adriano Martimbianco de Assis
- Health Sciences Centre, Post-Graduate Program in Health and Behaviour, Catholic University of Pelotas, Pelotas, Brazil
| | - Francesca Pieropan
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - José Cláudio Fonseca Moreira
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil.
| | - Arthur Morgan Butt
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil.
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
4
|
Kalinina TS, Shishkina GT, Lanshakov DA, Sukhareva EV, Onufriev MV, Moiseeva YV, Gulyaeva NV, Dygalo NN. Comparative Investigation of Expression of Glutamatergic and GABAergic Genes in the Rat Hippocampus after Focal Brain Ischemia and Central LPS Administration. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:539-550. [PMID: 37080939 DOI: 10.1134/s0006297923040090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Among the responses in the early stages of stroke, activation of neurodegenerative and proinflammatory processes in the hippocampus is of key importance for the development of negative post-ischemic functional consequences. However, it remains unclear, what genes are involved in these processes. The aim of this work was a comparative study of the expression of genes encoding glutamate and GABA transporters and receptors, as well as inflammation markers in the hippocampus one day after two types of middle cerebral artery occlusion (according to Koizumi et al. method, MCAO-MK, and Longa et al. method, MCAO-ML), and direct pro-inflammatory activation by central administration of bacterial lipopolysaccharide (LPS). Differences and similarities in the effects of these challenges on gene expression were observed. Expression of a larger number of genes associated with activation of apoptosis and neuroinflammation, glutamate reception, and markers of the GABAergic system changed after the MCAO-ML and LPS administration than after the MCAO-MK. Compared with the MCAO-ML, the MCAO-MK and LPS challenges caused changes in the expression of more genes involved in glutamate transport. The most pronounced difference between the responses to different challenges was the changes in expression of calmodulin and calmodulin-dependent kinases genes observed after MCAO, especially MCAO-ML, but not after LPS. The revealed specific features of the hippocampal gene responses to the two types of ischemia and a pro-inflammatory stimulus could contribute to further understanding of the molecular mechanisms underlying diversity of the post-stroke consequences both in the model studies and in the clinic.
Collapse
Affiliation(s)
- Tatyana S Kalinina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Galina T Shishkina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Dmitriy A Lanshakov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Ekaterina V Sukhareva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Mikhail V Onufriev
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, 117485, Russia
| | - Yulia V Moiseeva
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, 117485, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, 117485, Russia
| | - Nikolay N Dygalo
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
5
|
Dong D, Ren A, Yang Y, Su J, Liu L, Zhuo W, Liang Y. VX-765 Alleviates β-Amyloid Deposition and Secondary Degeneration in the Ipsilateral Hippocampus and Ameliorates Cognitive Decline after Focal Cortical Infarction in Rats. J Mol Neurosci 2022; 72:2389-2397. [PMID: 36441377 PMCID: PMC9805416 DOI: 10.1007/s12031-022-02088-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Focal cortical infarction leads to secondary degeneration of the ipsilateral hippocampus, which is associated with poststroke cognitive impairment. VX-765 is a potent small-molecule caspase-1 inhibitor that protects against central nervous system diseases. The present study aimed to determine the protective effects of VX-765 on β-amyloid (Aβ) deposition and secondary degeneration in the hippocampus as well as cognitive decline after cortical infarction. Sprague-Dawley rats were used to establish a distal middle cerebral artery occlusion (dMCAO) model and randomly divided into the vehicle and VX-765 groups. Rats in the vehicle and VX-765 groups, respectively, were subcutaneously injected with VX-765 (50 mg/kg/d) and an isopycnic vehicle once a day for 28 days, starting 1 h after dMCAO. At the end of this 28-day period, cognitive impairment was evaluated with the Morris water maze, and secondary hippocampal damage was evaluated with Nissl staining and immunostaining methods. Neuronal damage and pyroptosis were detected by TUNEL and immunoblotting. The results revealed that VX-765 treatment ameliorated poststroke cognitive dysfunction after ischemia. VX-765 reduced Aβ deposition, neuronal loss, and glial activation compared with the vehicle control. In addition, VX-765 treatment increased BDNF levels and normalized synaptophysin protein levels in the hippocampus after cortical infarction. Notably, VX-765 treatment significantly reduced the expression of the pyroptosis-related molecules caspase-1, NLRP3, apoptosis-associated speck-like protein (ASC), gasdermin D, IL-1β, and IL-18. Additionally, VX-765 significantly decreased the numbers of TUNEL-positive cells and the levels of Bax and cleaved caspase-3 (cC3) and enhanced the levels of Bcl-2 and Bcl-xl after ischemia. Inflammatory pathways, such as the NF-κB and mitogen-activated protein kinase (MAPK) pathways, were inhibited by VX-765 treatment after ischemia. These findings revealed that VX-765 reduced Aβ deposition, pyroptosis, and apoptosis in the ipsilateral hippocampus, which may be associated with reduced secondary degeneration and cognitive decline following focal cortical infarction.
Collapse
Affiliation(s)
- Dawei Dong
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Aihui Ren
- Department of Neurology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Ying Yang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Jiayi Su
- Department of Neurology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Libin Liu
- Department of Neurology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Wenyan Zhuo
- Department of Neurology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Yubin Liang
- Department of Neurology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China.
| |
Collapse
|
6
|
You JY, Liu XW, Bao YX, Shen ZN, Wang Q, He GY, Lu J, Zhang JG, Chen JW, Liu PQ. A novel phosphodiesterase 9A inhibitor LW33 protects against ischemic stroke through the cGMP/PKG/CREB pathway. Eur J Pharmacol 2022; 925:174987. [DOI: 10.1016/j.ejphar.2022.174987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 01/24/2023]
|
7
|
Post-Ischemic Neurodegeneration of the Hippocampus Resembling Alzheimer's Disease Proteinopathy. Int J Mol Sci 2021; 23:ijms23010306. [PMID: 35008731 PMCID: PMC8745293 DOI: 10.3390/ijms23010306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 12/26/2021] [Accepted: 12/26/2021] [Indexed: 12/14/2022] Open
Abstract
In this review, we summarize, inter alia, the protein and gene changes associated with Alzheimer’s disease and their role in post-ischemic hippocampal neurodegeneration. In the hippocampus, studies have revealed dysregulation of the genes for the amyloid protein precursor metabolism and tau protein that is identical in nature to Alzheimer’s disease. Data indicate that amyloid and tau protein, derived from brain tissue and blood due to increased permeability of the blood–brain barrier after ischemia, play a key role in post-ischemic neurodegeneration of the hippocampus, with concomitant development of full-blown dementia. Thus, the knowledge of new neurodegenerative mechanisms that cause neurodegeneration of the hippocampus after ischemia, resembling Alzheimer’s disease proteinopathy, will provide the most important therapeutic development goals to date.
Collapse
|
8
|
Shishkina GT, Gulyaeva NV, Lanshakov DA, Kalinina TS, Onufriev MV, Moiseeva YV, Sukhareva EV, Babenko VN, Dygalo NN. Identifying the Involvement of Pro-Inflammatory Signal in Hippocampal Gene Expression Changes after Experimental Ischemia: Transcriptome-Wide Analysis. Biomedicines 2021; 9:1840. [PMID: 34944656 PMCID: PMC8698395 DOI: 10.3390/biomedicines9121840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022] Open
Abstract
Acute cerebral ischemia induces distant inflammation in the hippocampus; however, molecular mechanisms of this phenomenon remain obscure. Here, hippocampal gene expression profiles were compared in two experimental paradigms in rats: middle cerebral artery occlusion (MCAO) and intracerebral administration of lipopolysaccharide (LPS). The main finding is that 10 genes (Clec5a, CD14, Fgr, Hck, Anxa1, Lgals3, Irf1, Lbp, Ptx3, Serping1) may represent key molecular links underlying acute activation of immune cells in the hippocampus in response to experimental ischemia. Functional annotation clustering revealed that these genes built the same clusters related to innate immunity/immunity/innate immune response in all MCAO differentially expressed genes and responded to the direct pro-inflammatory stimulus group. The gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses also indicate that LPS-responding genes were the most abundant among the genes related to "positive regulation of tumor necrosis factor biosynthetic process", "cell adhesion", "TNF signaling pathway", and "phagosome" as compared with non-responding ones. In contrast, positive and negative "regulation of cell proliferation" and "HIF-1 signaling pathway" mostly enriched with genes that did not respond to LPS. These results contribute to understanding genomic mechanisms of the impact of immune/inflammatory activation on expression of hippocampal genes after focal brain ischemia.
Collapse
Affiliation(s)
- Galina T. Shishkina
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (D.A.L.); (T.S.K.); (E.V.S.); (V.N.B.); (N.N.D.)
| | - Natalia V. Gulyaeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (N.V.G.); (M.V.O.); (Y.V.M.)
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Dmitriy A. Lanshakov
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (D.A.L.); (T.S.K.); (E.V.S.); (V.N.B.); (N.N.D.)
| | - Tatyana S. Kalinina
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (D.A.L.); (T.S.K.); (E.V.S.); (V.N.B.); (N.N.D.)
| | - Mikhail V. Onufriev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (N.V.G.); (M.V.O.); (Y.V.M.)
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Yulia V. Moiseeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (N.V.G.); (M.V.O.); (Y.V.M.)
| | - Ekaterina V. Sukhareva
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (D.A.L.); (T.S.K.); (E.V.S.); (V.N.B.); (N.N.D.)
| | - Vladimir N. Babenko
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (D.A.L.); (T.S.K.); (E.V.S.); (V.N.B.); (N.N.D.)
| | - Nikolay N. Dygalo
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (D.A.L.); (T.S.K.); (E.V.S.); (V.N.B.); (N.N.D.)
| |
Collapse
|
9
|
Qiu M, Xu E, Zhan L. Epigenetic Regulations of Microglia/Macrophage Polarization in Ischemic Stroke. Front Mol Neurosci 2021; 14:697416. [PMID: 34707480 PMCID: PMC8542724 DOI: 10.3389/fnmol.2021.697416] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/26/2021] [Indexed: 01/04/2023] Open
Abstract
Ischemic stroke is one of the leading causes of death and disability worldwide. Microglia/macrophages (MMs)-mediated neuroinflammation contributes significantly to the pathological process of ischemic brain injury. Microglia, serving as resident innate immune cells in the central nervous system, undergo pro-inflammatory phenotype or anti-inflammatory phenotype in response to the microenvironmental changes after cerebral ischemia. Emerging evidence suggests that epigenetics modifications, reversible modifications of the phenotype without changing the DNA sequence, could play a pivotal role in regulation of MM polarization. However, the knowledge of the mechanism of epigenetic regulations of MM polarization after cerebral ischemia is still limited. In this review, we present the recent advances in the mechanisms of epigenetics involved in regulating MM polarization, including histone modification, non-coding RNA, and DNA methylation. In addition, we discuss the potential of epigenetic-mediated MM polarization as diagnostic and therapeutic targets for ischemic stroke. It is valuable to identify the underlying mechanisms between epigenetics and MM polarization, which may provide a promising treatment strategy for neuronal damage after cerebral ischemia.
Collapse
Affiliation(s)
- Meiqian Qiu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - En Xu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Lixuan Zhan
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|
10
|
Lyu J, Xie D, Bhatia TN, Leak RK, Hu X, Jiang X. Microglial/Macrophage polarization and function in brain injury and repair after stroke. CNS Neurosci Ther 2021; 27:515-527. [PMID: 33650313 PMCID: PMC8025652 DOI: 10.1111/cns.13620] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Stroke is a leading cause of disability and mortality, with limited treatment options. After stroke injury, microglia and CNS‐resident macrophages are rapidly activated and regulate neuropathological processes to steer the course of functional recovery. To accelerate this recovery, microglia can engulf dying cells and clear irreparably‐damaged tissues, thereby creating a microenvironment that is more suitable for the formation of new neural circuitry. In addition, monocyte‐derived macrophages cross the compromised blood‐brain barrier to infiltrate the injured brain. The specific functions of myeloid lineage cells in brain injury and repair are diverse and dependent on phenotypic polarization statuses. However, it remains to be determined to what degree the CNS‐invading macrophages occupy different functional niches from CNS‐resident microglia. In this review, we describe the physiological characteristics and functions of microglia in the developing and adult brain. We also review (a) the activation and phenotypic polarization of microglia and macrophages after stroke, (b) molecular mechanisms that control polarization status, and (c) the contribution of microglia to brain pathology versus repair. Finally, we summarize current breakthroughs in therapeutic strategies that calibrate microglia/macrophage responses after stroke. The present review summarizes recent advances in microglial research in relation to stroke with emphases on microglial/macrophage phenotypic polarization and function in brain injury and repair. It also reviews the physiological characteristics and functions of microglia in the developing and adult brain, and describes current breakthroughs in therapeutic strategies that calibrate microglia/macrophage responses after stroke.
![]()
Collapse
Affiliation(s)
- Junxuan Lyu
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Di Xie
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Xiaoming Hu
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Xiaoyan Jiang
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Participation of Amyloid and Tau Protein in Post-Ischemic Neurodegeneration of the Hippocampus of a Nature Identical to Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22052460. [PMID: 33671097 PMCID: PMC7957532 DOI: 10.3390/ijms22052460] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/05/2023] Open
Abstract
Recent evidence suggests that amyloid and tau protein are of vital importance in post-ischemic death of CA1 pyramidal neurons of the hippocampus. In this review, we summarize protein alterations associated with Alzheimer's disease and their gene expression (amyloid protein precursor and tau protein) after cerebral ischemia, as well as their roles in post-ischemic hippocampus neurodegeneration. In recent years, multiple studies aimed to elucidate the post-ischemic processes in the development of hippocampus neurodegeneration. Their findings have revealed the dysregulation of genes for amyloid protein precursor, β-secretase, presenilin 1 and 2, tau protein, autophagy, mitophagy, and apoptosis identical in nature to Alzheimer's disease. Herein, we present the latest data showing that amyloid and tau protein associated with Alzheimer's disease and their genes play a key role in post-ischemic neurodegeneration of the hippocampus with subsequent development of dementia. Therefore, understanding the underlying process for the development of post-ischemic CA1 area neurodegeneration in the hippocampus in conjunction with Alzheimer's disease-related proteins and genes will provide the most important therapeutic development goals to date.
Collapse
|
12
|
Barhwal KK, Biswal S, Chandra Nag T, Chaurasia OP, Hota SK. Class switching of carbonic anhydrase isoforms mediates remyelination in CA3 hippocampal neurons during chronic hypoxia. Free Radic Biol Med 2020; 161:102-114. [PMID: 33035636 DOI: 10.1016/j.freeradbiomed.2020.09.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/19/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022]
Abstract
Chronic exposure to hypoxia results in cerebral white matter hyperintensities, increased P300 latency, delayed response and impairment in working memory. Despite burgeoning evidence on role of myelination in nerve conduction, the effect of chronic hypoxia on myelination of hippocampal neurons has been less studied. The present study provides novel evidence on alterations in myelination of hippocampal CA3 neurons following chronic hypoxic exposure. Sprague Dawley rats exposed to global hypobaric hypoxia simulating altitude of 25,000 ft showed progressive demyelination in CA3 hippocampal neurons on 14 days followed by remyelination on 21 and 28 days. The demyelination of CA3 neurons was associated with increased apoptosis of both oligodendrocyte precursor cells (OPCs) and mature oligodendrocytes (OLs), peroxidation of myelin lipids, and nitration induced reduced expression of Carbonic Anhydrase II (CAII). Prolonged hypoxic exposure of 21 and 28 days on the other hand resulted in peroxisome proliferator-activated receptor alpha (PPARα) induced upregulation of Carbonic Anhydrase IV (CAIV) expression in mature oligodendrocytes through iNOS mediated mechanisms along with reduction in lipid peroxidation and remyelination. Inhibition of carbonic anhydrase activity on the other hand prevented remyelination of CA3 neurons. Based on these findings we propose a novel iNOS mediated mechanism for regulation of myelination in hypoxic hippocampal neurons through class switching of carbonic anhydrases.
Collapse
Affiliation(s)
- Kalpana Kumari Barhwal
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, 751019, India.
| | - Suryanarayan Biswal
- Centre for Brain Development and Repair, Institute of Stem Cell Biology and Regenerative Medicine, Bangalore, 560065, India; Defence Institute of High Altitude Research, DRDO, C/o 56 APO, Leh-Ladakh, Jammu & Kashmir, 901205, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Om Prakash Chaurasia
- Defence Institute of High Altitude Research, DRDO, C/o 56 APO, Leh-Ladakh, Jammu & Kashmir, 901205, India
| | - Sunil Kumar Hota
- O/o Director General (Life Sciences), DRDO Head Quarters, Rajaji Marg, New Delhi, 110011, India
| |
Collapse
|
13
|
Xu AL, Zheng GY, Ye HY, Chen XD, Jiang Q. Characterization of astrocytes and microglial cells in the hippocampal CA1 region after transient focal cerebral ischemia in rats treated with Ilexonin A. Neural Regen Res 2020; 15:78-85. [PMID: 31535655 PMCID: PMC6862412 DOI: 10.4103/1673-5374.264465] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Ilexonin A is a compound isolated from the root of Ilex pubescens, a traditional Chinese medicine. Ilexonin A has been shown to play a neuroprotective role by regulating the activation of astrocytes and microglia in the peri-infarct area after ischemia. However, the effects of ilexonin A on astrocytes and microglia in the infarct-free region of the hippocampal CA1 region remain unclear. Focal cerebral ischemia models were established by 2-hour occlusion of the middle cerebral artery in rats. Ilexonin A (20, 40 or 80 mg/kg) was administered immediately after ischemia/reperfusion. The astrocyte marker glial fibrillary acidic protein, microglia marker Iba-1, neural stem cell marker nestin and inflammation markers were detected by immunohistochemistry and western blot assay. Expression levels of tumor necrosis factor-α and interleukin 1β were determined by enzyme linked immunosorbent assay in the hippocampal CA1 tissue. Astrocytes were activated immediately in progressively increasing numbers from 1, 3, to 7 days post-ischemia/reperfusion. The number of activated astrocytes further increased in the hippocampal CA1 region after treatment with ilexonin A. Microglial cells remained quiescent after ischemia/reperfusion, but became activated after treatment with ilexonin A. Ilexonin A enhanced nestin expression and reduced the expression of tumor necrosis factor-α and interleukin 1β in the hippocampus post-ischemia/reperfusion. The results of the present study suggest that ilexonin A has a neuroprotective effect in the hippocampus after ischemia/reperfusion, probably through regulating astrocytes and microglia activation, promoting neuronal stem cell proliferation and reducing the levels of pro-inflammatory factors. This study was approved by the Animal Ethics Committee of the Fujian Medical University Union Hospital, China.
Collapse
Affiliation(s)
- Ai-Ling Xu
- Department of Traditional Chinese Medicine, Fujian Medical University Union Hospital; Department of Neonatology, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Guan-Yi Zheng
- Department of Traditional Chinese Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Hui-Ying Ye
- Department of Traditional Chinese Medicine, Fujian Medical University Union Hospital, Fuzhou; Department of Neurology, People's Hospital of Nanping, Nanping, Fujian Province, China
| | - Xiao-Dong Chen
- Burns Institute of Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Qiong Jiang
- Burns Institute of Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| |
Collapse
|
14
|
Du B, Li H, Zheng H, Fan C, Liang M, Lian Y, Wei Z, Zhang Y, Bi X. Minocycline Ameliorates Depressive-Like Behavior and Demyelination Induced by Transient Global Cerebral Ischemia by Inhibiting Microglial Activation. Front Pharmacol 2019; 10:1247. [PMID: 31695615 PMCID: PMC6817504 DOI: 10.3389/fphar.2019.01247] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022] Open
Abstract
Global cerebral ischemia (GCI) commonly occurs in the elderly. Subcortical white matter lesions and oligodendrocyte (OLG) loss caused by cerebral ischemia have been implicated in the development of post-ischemic depression and cognitive impairment. OLGs are necessary for axonal myelination; the disrupted differentiation of OLG progenitor cells (OPCs) is associated with impaired remyelination. Evidence has indicated that increased levels of inflammatory cytokines released from activated microglia induce depression-like behaviors by affecting neurotransmitter pathways, but the mechanisms remain elusive. We explored the potential mechanisms that link microglia activation with GCI-induced depression and cognitive dysfunction by studying effects of minocycline on white matter damage, cytokine levels, and the monoaminergic neurotransmitters. An acute GCI animal model was generated through bilateral common carotid artery occlusion to induce ischemic inflammation and subcortical white matter damage. Minocycline, an inhibitor of microglia activation, was intraperitoneally administrated immediately after surgery and continued daily for additional six days. Minocycline shortened the immobile duration in tail suspension test and forced swimming test, while no improvement was found in Morris water maze test. The plasma levels of IL-1β, IL-6, TNF-α, HMGB1, and netrin-1 were significantly reduced with the treatment of minocycline. Minocycline treatment substantially reversed demyelination in corpus callosum and hippocampus, alleviated hippocampal microglia activation, and promoted OPCs maturation, while no effect was found on hippocampal neurodegeneration. Besides, the content of dopamine (DA) in the hippocampus was upregulated by minocycline treatment after GCI. Collectively, our data demonstrated that minocycline exerts an anti-depressant effect by inhibiting microglia activation, promoting OPCs maturation and remyelination. Increased DA in hippocampus may also play a role in ameliorating depressive behavior with minocycline treatment.
Collapse
Affiliation(s)
- Bingying Du
- Department of Neurology, Shanghai Changhai Hospital, the Second Military Medical University, Shanghai, China.,Department of Neurology, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, China
| | - Hailong Li
- Department of Neurology, Shanghai Changhai Hospital, the Second Military Medical University, Shanghai, China.,Department of Rehabilitation Medicine, Zhejiang Hospital, Hangzhou, China
| | - Huiwen Zheng
- Department of Neurology, Shanghai Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Cunxiu Fan
- Department of Neurology, Shanghai Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Meng Liang
- Department of Neurology, Shanghai Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Yongjie Lian
- Department of Neurology, Shanghai Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Zelan Wei
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yanbo Zhang
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiaoying Bi
- Department of Neurology, Shanghai Changhai Hospital, the Second Military Medical University, Shanghai, China
| |
Collapse
|
15
|
Dual Functions of Microglia in Ischemic Stroke. Neurosci Bull 2019; 35:921-933. [PMID: 31062335 DOI: 10.1007/s12264-019-00388-3] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/30/2018] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke is a leading cause of morbidity and mortality worldwide. Resident microglia are the principal immune cells of the brain, and the first to respond to the pathophysiological changes induced by ischemic stroke. Traditionally, it has been thought that microglial activation is deleterious in ischemic stroke, and therapies to suppress it have been intensively explored. However, increasing evidence suggests that microglial activation is also critical for neurogenesis, angiogenesis, and synaptic remodeling, thereby promoting functional recovery after cerebral ischemia. Here, we comprehensively review the dual role of microglia during the different phases of ischemic stroke, and the possible mechanisms controlling the post-ischemic activity of microglia. In addition, we discuss the dynamic interactions between microglia and other cells, such as neurons, astrocytes, oligodendrocytes, and endothelial cells within the brain parenchyma and the neurovascular unit.
Collapse
|
16
|
Functional Neurochemistry of the Ventral and Dorsal Hippocampus: Stress, Depression, Dementia and Remote Hippocampal Damage. Neurochem Res 2018; 44:1306-1322. [PMID: 30357653 DOI: 10.1007/s11064-018-2662-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/15/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022]
Abstract
The hippocampus is not a homogeneous brain area, and the complex organization of this structure underlies its relevance and functional pleiotropism. The new data related to the involvement of the ventral hippocampus in the cognitive function, behavior, stress response and its association with brain pathology, in particular, depression, are analyzed with a focus on neuroplasticity, specializations of the intrinsic neuronal network, corticosteroid signaling through mineralocorticoid and glucocorticoid receptors and neuroinflammation in the hippocampus. The data on the septo-temporal hippicampal gradient are analyzed with particular emphasis on the ventral hippocampus, a region where most important alteration underlying depressive disorders occur. According to the recent data, the existing simple paradigm "learning (dorsal hippocampus) versus emotions (ventral hippocampus)" should be substantially revised and specified. A new hypothesis is suggested on the principal involvement of stress response mechanisms (including interaction of released glucocorticoids with hippocampal receptors and subsequent inflammatory events) in the remote hippocampal damage underlying delayed dementia and depression induced by focal brain damage (e.g. post-stroke and post-traumatic). The translational validity of this hypothesis comprising new approaches in preventing post-stroke and post-trauma depression and dementia can be confirmed in experimental and clinical studies.
Collapse
|
17
|
Spatial Dynamics of Vascular and Biochemical Injury in Rat Hippocampus Following Striatal Injury and Aβ Toxicity. Mol Neurobiol 2018; 56:2714-2727. [DOI: 10.1007/s12035-018-1225-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 07/05/2018] [Indexed: 01/09/2023]
|
18
|
Icariin Improves Cognitive Impairment after Traumatic Brain Injury by Enhancing Hippocampal Acetylation. Chin J Integr Med 2018; 24:366-371. [PMID: 29327125 DOI: 10.1007/s11655-018-2823-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To examine the effect of icariin (ICA) on the cognitive impairment induced by traumatic brain injury (TBI) in mice and the underlying mechanisms related to changes in hippocampal acetylation level. METHODS The modifified free-fall method was used to establish the TBI mouse model. Mice with post-TBI cognitive impairment were randomly divided into 3 groups using the randomised block method (n=7): TBI (vehicle-treated), low-dose (75 mg/kg) and high-dose (150 mg/kg) of ICA groups. An additional sham-operated group (vehicle-treated) was employed. The vehicle or ICA was administrated by gavage for 28 consecutive days. The Morris water maze (MWM) test was conducted. Acetylcholine (ACh) content, mRNA and protein levels of choline acetyltransferase (ChAT), and protein levels of acetylated H3 (Ac-H3) and Ac-H4 were detected in the hippocampus. RESULTS Compared with the sham-operated group, the MWM performance, hippocampal ACh content, mRNA and protein levels of ChAT, and protein levels of Ac-H3 and Ac-H4 were signifificantly decreased in the TBI group (P<0.05). High-dose of ICA signifificantly ameliorated the TBI-induced weak MWM performance, increased hippocampal ACh content, and mRNA and protein levels of ChAT, as well as Ac-H3 protein level compared with the TBI group (P<0.05). CONCLUSION ICA improved post-TBI cognitive impairment in mice by enhancing hippocampal acetylation, which improved hippocampal cholinergic function and ultimately improved cognition.
Collapse
|
19
|
Onufriev MV, Freiman SV, Moiseeva YV, Stepanichev MY, Lazareva NA, Gulyaeva NV. Accumulation of corticosterone and interleukin-1β in the hippocampus after focal ischemic damage of the neocortex: Selective vulnerability of the ventral hippocampus. NEUROCHEM J+ 2017. [DOI: 10.1134/s1819712417030084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Protective Effects of Spatholobi Caulis Extract on Neuronal Damage and Focal Ischemic Stroke/Reperfusion Injury. Mol Neurobiol 2017; 55:4650-4666. [DOI: 10.1007/s12035-017-0652-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/11/2017] [Indexed: 01/26/2023]
|
21
|
Postischemic Anhedonia Associated with Neurodegenerative Changes in the Hippocampal Dentate Gyrus of Rats. Neural Plast 2016; 2016:5054275. [PMID: 27057366 PMCID: PMC4812484 DOI: 10.1155/2016/5054275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/10/2016] [Accepted: 01/17/2016] [Indexed: 11/18/2022] Open
Abstract
Poststroke depression is one of the major symptoms observed in the chronic stage of brain stroke such as cerebral ischemia. Its pathophysiological mechanisms, however, are not well understood. Using the transient right middle cerebral artery occlusion- (MCAO-, 90 min) operated rats as an ischemia model in this study, we first observed that aggravation of anhedonia spontaneously occurred especially after 20 weeks of MCAO, and it was prevented by chronic antidepressants treatment (imipramine or fluvoxamine). The anhedonia specifically associated with loss of the granular neurons in the ipsilateral side of hippocampal dentate gyrus and was also prevented by an antidepressant imipramine. Immunohistochemical analysis showed increased apoptosis inside the granular cell layer prior to and associated with the neuronal loss, and imipramine seemed to recover the survival signal rather than suppressing the death signal to prevent neurons from apoptosis. Proliferation and development of the neural stem cells were increased transiently in the subgranular zone of both ipsi- and contralateral hippocampus within one week after MCAO and then decreased and almost ceased after 6 weeks of MCAO, while chronic imipramine treatment prevented them partially. Overall, our study suggests new insights for the mechanistic correlation between poststroke depression and the delayed neurodegenerative changes in the hippocampal dentate gyrus with effective use of antidepressants on them.
Collapse
|
22
|
Schmidt-Kastner R. Genomic approach to selective vulnerability of the hippocampus in brain ischemia–hypoxia. Neuroscience 2015; 309:259-79. [DOI: 10.1016/j.neuroscience.2015.08.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023]
|
23
|
Xu CS, Liu AC, Chen J, Pan ZY, Wan Q, Li ZQ, Wang ZF. Overactivation of NR2B-containing NMDA receptors through entorhinal-hippocampal connection initiates accumulation of hyperphosphorylated tau in rat hippocampus after transient middle cerebral artery occlusion. J Neurochem 2015; 134:566-77. [PMID: 25903928 DOI: 10.1111/jnc.13134] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/17/2015] [Accepted: 04/07/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Cheng-Shi Xu
- Department of Neurosurgery; Zhongnan Hospital of Wuhan University; Wuhan Hubei China
| | - An-Chun Liu
- Department of Physiology; Wuhan University School of Basic Medical Sciences; Wuhan Hubei China
| | - Juan Chen
- Department of Physiology; Wuhan University School of Basic Medical Sciences; Wuhan Hubei China
| | - Zhi-Yong Pan
- Department of Neurosurgery; Zhongnan Hospital of Wuhan University; Wuhan Hubei China
| | - Qi Wan
- Department of Physiology; Wuhan University School of Basic Medical Sciences; Wuhan Hubei China
| | - Zhi-Qiang Li
- Department of Neurosurgery; Zhongnan Hospital of Wuhan University; Wuhan Hubei China
- Cerebral Vascular Diseases Center; Zhongnan Hospital of Wuhan University; Wuhan Hubei China
| | - Ze-Fen Wang
- Department of Physiology; Wuhan University School of Basic Medical Sciences; Wuhan Hubei China
| |
Collapse
|
24
|
Danielisova V, Gottlieb M, Bonova P, Nemethova M, Burda J. Bradykinin postconditioning ameliorates focal cerebral ischemia in the rat. Neurochem Int 2014; 72:22-9. [DOI: 10.1016/j.neuint.2014.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/20/2014] [Accepted: 04/08/2014] [Indexed: 01/10/2023]
|
25
|
An C, Shi Y, Li P, Hu X, Gan Y, Stetler RA, Leak RK, Gao Y, Sun BL, Zheng P, Chen J. Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair. Prog Neurobiol 2013; 115:6-24. [PMID: 24374228 DOI: 10.1016/j.pneurobio.2013.12.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/28/2013] [Accepted: 12/17/2013] [Indexed: 12/26/2022]
Abstract
Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the brain, but also trigger robust immune responses in the periphery. Peripheral immune cells then migrate toward the site of injury and release additional cytokines, chemokines, and other molecules, causing further disruptive or protective effects in the ischemic brain. Bidirectional communication between the injured brain and the peripheral immune system is now known to regulate the progression of stroke pathology as well as tissue repair. In the end, this exquisitely coordinated crosstalk helps determine the fate of animals after stroke. This article reviews the literature on ischemic brain-derived signals through which peripheral immune responses are triggered, and the potential impact of these peripheral responses on brain injury and repair. Pharmacological strategies and cell-based therapies that target the dialog between the brain and peripheral immune system show promise as potential novel treatments for stroke.
Collapse
Affiliation(s)
- Chengrui An
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yejie Shi
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA
| | - Peiying Li
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA
| | - Yu Gan
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ruth A Stetler
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Bao-Liang Sun
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian, Shandong 271000, China.
| | - Ping Zheng
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Jun Chen
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
26
|
Anti-inflammatory effects of total isoflavones from Pueraria lobata on cerebral ischemia in rats. Molecules 2013; 18:10404-12. [PMID: 23989686 PMCID: PMC6270189 DOI: 10.3390/molecules180910404] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/21/2013] [Accepted: 08/23/2013] [Indexed: 11/17/2022] Open
Abstract
Puerariae radix, the dried root of Pueraria lobata Ohwi, is one of earliest and most important edible crude herbs used for various medical purposes in Oriental medicine. The aim of the present study was to determine the anti-inflammatory effects of Total Isoflavones from P. lobata (TIPL), which contains the unique isoflavone puerarin, in ischemia in vivo models. Oral administration of TIPL (100 mg/kg) reduced the brain infarct volume and attenuated ischemia-induced cyclooxygenase-2 (COX-2) up-regulation at 2 days after middle cerebral artery occlusion (MCAo) in rats. Moreover, TIPL reduced activation of glial fibrillary acid protein (GFAP) and CD11b antibody (OX-42) at 7 days after MCAo in hippocampal CA1 region. These results show that TIPL can protect the brain from ischemic damage after MCAo. Regarding the immunohistochemical study, the effects of TIPL may be attributable to its anti-inflammatory properties by the inhibition of COX-2 expression, astrocyte expression, and microglia.
Collapse
|
27
|
Bonova P, Burda J, Danielisova V, Nemethova M, Gottlieb M. Development of a pattern in biochemical parameters in the core and penumbra during infarct evolution after transient MCAO in rats. Neurochem Int 2013; 62:8-14. [DOI: 10.1016/j.neuint.2012.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/04/2012] [Accepted: 10/30/2012] [Indexed: 10/27/2022]
|
28
|
Yan BC, Park JH, Kim IH, Shin BN, Ahn JH, Yoo KY, Lee DS, Kim MJ, Kang IJ, Won MH. Chronological changes in inflammatory cytokines immunoreactivities in the mouse hippocampus after systemic administration of high dosage of tetanus toxin. Exp Brain Res 2012; 223:271-80. [PMID: 22990290 DOI: 10.1007/s00221-012-3257-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 09/01/2012] [Indexed: 12/24/2022]
Abstract
Tetanus toxin (TeT) is an exotoxin and has a capacity for neuronal binding and internalization. In the present study, we compared changes in the immunoreactivities and protein levels of interleukin (IL-) 2 as a pro-inflammatory cytokine and IL-4 as an anti-inflammatory cytokine in the hippocampus proper (HP) and dentate gyrus (DG) after systemic treatment of 10 or 100 ng/kg TeT into mice. In this study, we could not find any neuronal damage or loss in any subregions of the hippocampus after TeT treatment. In the control groups, strong IL-2 immunoreactivity was shown in the stratum pyramidal (SP) of the HP and in the granule cell layer (GCL) of the DG. At 6 h post-treatment, IL-2 immunoreactivity was hardly detected in the SP and GCL; however, strong IL-2 immunoreactivity was shown in the stratum oriens of the HP in both the groups. Thereafter, intermediate IL-2 immunoreactivity was shown in the SP and GCL. On the other hand, intermediate IL-4 immunoreactivity was detected in the SP and GCL of the control groups. At 6 h post-treatment, IL-4 immunoreactivity in the SP and GCL was apparently increased. Thereafter, IL-4 immunoreactivity was lower than that at 6 h post-treatment. In brief, IL-2 and 4 immunoreactivities were easily detected in SP and GCL in the controls and dramatically decreased and increased at 6 h post-treatment, respectively.
Collapse
Affiliation(s)
- Bing Chun Yan
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Delayed neurodegenerative changes in the hippocampal dentate gyrus after transient focal cerebral ischemia induced by middle cerebral artery-occlusion (MCAO) in rats. Neurosci Res 2011. [DOI: 10.1016/j.neures.2011.07.1769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|